

Practice Conceptual Modelling with

the Bee-Up Tool

The “IMKER” Case Study

Patrik Burzynski

Dimitris Karagiannis

Wilfrid Utz

Iulia Vaidian

O p e n | M o d e l s

Laboratory

Authors

Patrik Burzynski

patrik.burzynski@omilab.org

Dimitris Karagiannis

dk@dke.univie.ac.at

Wilfrid Utz

wilfrid.utz@omilab.org

Iulia Vaidian

iulia.vaidian@omilab.org

January 2022

Editor
OMiLAB gGmbH (NPO)

DOI
10.5281/zenodo.781678

Imprint
Media Owner and Publisher

OMiLAB gGmbH (NPO)

Picture Rights
All logos are the property of their respective owners.

Social Media icons: Designed by alicia_mb / Freepik
All images ©OMiLAB NPO, if otherwise not mentioned.

mailto:patrik.burzynski@omilab.org
mailto:dk@dke.univie.ac.at
mailto:wilfrid.utz@omilab.org
mailto:iulia.vaidian@omilab.org

The IMKER case study

 1

Bee-Up: A Multi-language Modeling Environment for Design and Evaluation of

Conceptual Models

The IMKER case study

Abstract

Conceptual modelling is a technique that is essential for building enterprise information systems. The

reason is not only because software systems have to be built, but also since domain-specific

requirements coming from the application area should be represented adequately. For this reason,

different modelling languages for data modelling, process modelling, and systems modelling are

developed. In this case study, we deal with the fundamental conceptual modelling languages, like BPMN,

EPC, ER, UML, and Petri Nets. Tool support through Bee-Up is also given (www.omilab.org). This case

study focuses on the domain of beekeeping throughout different areas, like the production of honey,

bees in general, and beekeepers (called Imker in German).

Table of Contents

The IMKER case study .. 1

1. The IMKER World ... 2

2. Settings ... 3

3. Model Extraction and Design ... 4

4. Modelling Languages: Overview .. 6

5. A Specific Case .. 11

6. The Bee-Up Environment ... 16

Appendix I: Bee-Up Handbook ... 28

1. General information ... 28

2. Installation .. 28

3. Modelling with the Bee-Up tool ... 32

4. Exporting models .. 37

5. Additional hints and information ... 39

6. Change History ... 51

7. Development Team .. 52

8. Additional used Tools ... 52

The IMKER case study

2

1. The IMKER World
Bees might be known to many as a nuisance, especially during a picnic, but they also

provide different products and services used in different areas of life, of which honey is

probably the best known. In 2015 the honey production yielded ~268 thousand tons of

honey in the European Union, being the second-largest honey producer after China.

However, the EU was also the largest importer of honey in 2015, with ~198 thousand

tons of imported honey, at ~2520 euro per ton, while only exporting ~18 thousand tons, at ~5770 euro

per ton. Nevertheless, the honey market is considered small in the EU compared to its other markets.

Besides honey bees also provide beeswax, which can be used for candles, in cosmetic products, or

pharmaceuticals. Another product provided by bees is propolis with applications in naturopathic

treatments.

Bees also play an important role in the pollination of crops and other plants, which is

necessary for their reproduction. It is estimated that 90% of pollination is achieved

through biotic pollination, where living organisms move the pollen from plant to plant.

It is estimated that biotic pollination contributes 22 billion euros to the European

agriculture industry each year. While plants are pollinated by many different insects,

including flies, beetles, and butterflies, the managed nature of bees through beekeeping helps

intentionally pollinate specific fields, growing for example sunflowers.

Beekeeping, or apiculture, is the intentional management of bees, often for the

purpose of producing the different products of bees, the breeding of bees, and the

pollination of plants. To be able to manage the bees or rather an entire bee colony a

beehive (or simply hive) is used. In 2015 the total number of hives in the European

Union was estimated at 16 million. Beehives are often built out of several different

parts, serving different functions, not only to provide a home to a bee colony but also to facilitate the

work of a beekeeper, like extracting the honey or protecting the bees against rodents.

A beekeeper, called Imker in German, takes care of their bees and their hive and

harvests the different products of the bees or provides a pollination service. In the

previous years, the number of beekeepers has been decreasing in the EU, reaching

~600 thousand beekeepers in 2015. Generally, beekeepers can be mainly categorized

in commercial and recreational, which practice beekeeping as a hobby. To go about

their work the beekeeper also has different tools at their disposal, like a bee smoker to calm the bees,

special protective attire, or a honey extractor. While a beekeeper is capable of managing the colonies

and influencing them to a certain degree, they cannot directly control the bees. It is a beekeeper's task

to take care and help the colonies under their care.

The beekeepers are themselves receiving help from a different organization. The

European Union is supporting beekeeping through different apiculture programs,

funding 216 million euros (50% from the EU, 50% from member states) from 2017 to

2019. It has also created regulations to provide a legal basis for establishing a common

organization of the markets in agricultural products, to which honey belongs.

Additionally, national beekeeping associations (e.g. The British Beekeepers Association, Österreichischer

Imkerbund, etc.) provide varying services for the beekeepers and interested people alike, for example,

education of the general population, specific courses for beekeepers to extend their knowledge, funding

of beekeepers, support with legal aspects like insurance or registration or web-shops providing items for

beekeepers and interested people alike. There are of course also legal obligations for beekeeping and

beekeepers, which can differ from country to country. For example, the EU has specific labeling rules for

honey.

 The IMKER case study

 3

Sources for the IMKER World (accessed 19.01.2017):

• https://ec.europa.eu/agriculture/honey_en

• https://ec.europa.eu/agriculture/sites/agriculture/files/honey/presentation-honey-2015_en.pdf

• http://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-

reports/2013/apiculture/chap3_en.pdf

• https://ec.europa.eu/agriculture/honey/programmes_en

• http://eur-lex.europa.eu/legal-content/en/TXT/?qid=1475150583359&uri=CELEX:32013R1308

• http://ec.europa.eu/food/animals/live_animals/bees_en

• http://www.ecpa.eu/sites/default/files/Pollinators%20brochure_B%C3%A0T2.pdf

• http://www.bbka.org.uk/

• https://www.imkerbund.at

• http://www.beverlybees.com/parts-beehive-beginner-beekeeper/

• http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=URISERV%3Al21124a

2. Settings
The domain of beekeeping provides different settings where information technology and conceptual

models can be applied, of which some will be presented in the following paragraphs.

A commercial beekeeper thinks to revise the approach of how they currently make money. They

consider using a Business model for this purpose. A Business model describes the setting of a business

and how it aims to achieve its goals and can be used to describe the currently applied approach or

possible alternatives. One form for modelling the business is through its business processes, where the

tasks providing the desired effect as well as any relevant preceding tasks and partners participating in

the execution can be described. This also helps to identify tasks that can further be supported by

information technology or use information technology to transform the business model altogether.

Business processes can be described using the Business Process Model and Notation (BPMN).

A company employing several beekeepers aims to better manage its resources and business processes

and plans to achieve this by introducing an Enterprise Resource Planning (ERP) system. An ERP system

allows managing the different resources found in a company, allowing varying views for different

functions on the same data. The available functions and the possibility for their extension depend on the

chosen ERP implementation, like standard software possibly with customization options or an in-house

developed ERP system. The functions can focus for example on analytics, finance, human resources,

supply chains, or (business) process management. Different types of models can be employed to

customize an ERP system, but as a specific example, Event-driven Process Chains (EPC) can be utilized

for process management.

A beekeeper, which is currently selling their goods in local shops, wants to reach a wider range of

customers. For this, they consider providing an e-shop. An e-shop allows changing the behavior of

purchasing goods, providing benefits for different actors, for example for selling honey, bred queen

bees, equipment for beekeepers, or pollination services to field owners. An e-shop changes the typical

synchronous handling of purchases in a store to an asynchronous one and also allows for a geographical

difference between the customer and the provider when purchasing products or at least placing orders.

Additionally, it requires providing a catalog describing the products/services provided to the customer.

To offer a maintainable e-shop solution a proper data structure is required. This data structure can be

designed using Entity-Relationship models (ER), which can be processed to implement a database.

A new start-up enterprise wants to introduce “smart factory” practices into beekeeping, like automated

harvesting and maintaining of beehives or automatic retrieval of hives using for example mechanical

drones. A smart factory, a part of Industry 4.0, introduces special principles into manufacturing and the

use of certain technology, most notably the integration of the Internet of Things (IoT) and use of Cyber-

https://ec.europa.eu/agriculture/honey_en
https://ec.europa.eu/agriculture/sites/agriculture/files/honey/presentation-honey-2015_en.pdf
http://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2013/apiculture/chap3_en.pdf
http://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2013/apiculture/chap3_en.pdf
https://ec.europa.eu/agriculture/honey/programmes_en
http://eur-lex.europa.eu/legal-content/en/TXT/?qid=1475150583359&uri=CELEX:32013R1308
http://ec.europa.eu/food/animals/live_animals/bees_en
http://www.ecpa.eu/sites/default/files/Pollinators%20brochure_B%C3%A0T2.pdf
http://www.bbka.org.uk/
https://www.imkerbund.at/
http://www.beverlybees.com/parts-beehive-beginner-beekeeper/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=URISERV%3Al21124a

The IMKER case study

4

Physical Systems (CPS). Some of the identified principles are interconnection between the actors,

information transparency, and decentralized decisions. A smart factory uses information from both the

physical and the virtual world to assist the execution of manual or automated tasks. To design and

describe specific scenarios that can then be implemented in a smart factory a modelling language for

describing the different aspects of systems like the Unified Modeling Language (UML) is necessary.

An enterprise focusing on the production of different bee-related products wants to go green and thus

to analyze their production processes according to the idea of “Green Production”. Green Production is

a strategy that incorporates environmental concerns into the processes and redesign of products to

reduce the negative impact on the environment. Environmental concerns to be considered are for

example the pollution during the production, the use of raw materials, and the amount or use of

created waste, to achieve an environmentally sustainable state. In this setting Petri Nets can be used for

modelling and analyzing the production processes according to the previously stated aspects. For

example, Petri Nets can be employed to identify tasks producing waste and consider how to reduce

waste or maybe even reuse the waste as material.

The described settings serve the general understanding for the application of conceptual models with

different modelling languages. Specific examples can be found in section 5.1.

3. Model Extraction and Design
Based on information gathered from the IMKER World, a selected case in section 5 is designed that is

relevant for current, or just beyond current, individual student practice within conceptual models. Based

on the goal and desired outcome, the proper modelling languages and modelling approach has to be

chosen. However, independent of those three general steps have to take place.

In the first step reading and understanding within a “text annotation approach” has to

take place, resulting in several design alternatives. Annotation of text allows

identifying the relevant information to fulfill the modelling requirements for a specific

case. Text annotations provide additional information to the reader through different

means of enhancing the text. This can be achieved through simple forms, like changes

in the text format or highlighting the text, or by adding content in the form of footnotes, comments, or

links. Annotations providing additional content allow clarifying certain parts without requiring the

change of the original text. The annotation of text can benefit different cases, like utilizing notes for a

specific reader's purpose in form of private annotations, public annotations viewable by all readers, or

annotations supporting the collaboration of different authors during the writing of a text.

When modelling individually instead of in a workshop environment, it is suggested to use this approach

to identify the main concepts which have to be modelled. We use the annotation techniques to identify

relevant modelling concepts for a specific purpose. The individual implementing the scenario should

define the information for the model building process according to their understanding and their view.

The OMiLAB Bee-Up page provides an online annotation tool for this case study. It can be accessed at

https://bee-up.omilab.org. For a general-purpose annotation tool, you can try SCRIBLE©.

The next step is a cognitive task, namely “mapping” the domain specifics within the

concepts of the modelling language. This requires knowledge about the specific case

that has to be modelled and its domain, which should have been obtained from the

previously annotated text, as well as knowledge about the used modelling language

and the domain the model, will be utilized in. The focus ought to be on deciding what

should be and how it should be depicted in the model. Here the student has to apply modeling language

knowledge and domain characteristics on an abstraction level, using the appropriate modeling language

elements and -rules.

https://bee-up.omilab.org/

 The IMKER case study

 5

Finally, the model design has to take place based on the specific scenarios, applying

the elements of the chosen modelling language and designing the semantical and

syntactical structure to create a conceptual model. Using the knowledge about the

domains and the modelling language and the mapping between the main concepts and

model elements allows creating the desired model. The detail of the model depends

also on how profound the knowledge of the modelling language is. Here the attention should be

directed towards how and in what relation to one another the things should be depicted. Traditionally,

model design refers to students writing several versions of a model, improving each version based on

feedback from the teacher or peers.

Different tools supporting the creation of the model are available, ranging from simple pen and paper to

fully integrated modelling applications. In this case, the exercises should be solved using the

functionality of the Bee-Up conceptual modeling tool (see Appendix I). The primary reason for that is

because we use transformation and generation algorithms, like generating SQL from Entity-Relationship

models or RDF descriptions from models. A conceptual modeling tool like Bee-Up could give immediate

support and help in a feedback cycle to improve also the quality of the model.

Bee-Up modeler is the tool that is used in this case study.

The conceptual models for the case will be extracted with the following process steps: annotate –

mapping – design.

Figure 1: An interactive model extraction and design procedure

It is envisaged that a student builds collaboratively shared models on a topic related to his/her exercises,

possibly with collaborating students from different disciplines. This will increase the involvement of

domain experts and consequently the model quality.

Bee-Up Wiki should help here with IMKER content.

Because research indicates that students learn more from feedback given during the working process

rather than after, it is also planned to implement a feedback component.

The IMKER case study

6

4. Modelling Languages: Overview
Business Process Model and Notation (BPMN) is an OMG standard designed to support the business

process management paradigm with a more extensive range of diagrammatic possibilities compared to

traditional flowcharts or UML activity diagrams. The language allows the modelling of an individual or

collaborative processes using the main concepts of Participants reacting to Events and performing Tasks,

whose flow can be controlled through Gateways. The support for the business process management

paradigm is achieved by adding domain-specificity in the language's semantics manifested through a

richness of types for different concepts (Tasks, Events, Gateways). Additionally, due to the strong focus

on notation, this variability in semantics is also reflected in the visualization of the concepts by adding

visual cues to the shapes.

Event-driven Process Chain (EPC) diagrams were introduced by the framework of Architecture of

Integrated Information Systems (ARIS) and its software tools. The main concepts are Events and

Functions depicting an alternating flow between “states” and “changes” to those states. The Functions

can further be connected to other elements of the enterprise context (responsible organization unit,

supporting IT system, input/output information). While the target domain of BPMN is shared by EPC the

exact scope is different, having a distinct trade-off between understandability and underlying formal

rigor through color coding and shape coding of concepts while removing the rich taxonomical

classifications promoted by BPMN.

 The IMKER case study

 7

Entity-Relationship (ER) models have been widely adopted in the conceptual modelling community as

the fundamental approach for data modelling, especially for the design and data schema generation of

databases. The core concepts are the Entity, the Relationship between Entities, and the Attributes of

Entities and Relationships. Dealing with Entities rather than tables/tuples an ER model may describe

data to be stored in structures other than relational databases. By describing categories of being and

their relations an ER model has a similar scope to UML Class Diagrams or meta-models.

Unified Modeling Language (UML) is one of the most prominent standards in software engineering

aimed at supporting a unified method for object-oriented software development. To achieve this it

incorporates lessons learned from a large number of previously used modelling languages and through

covering a wide scope using different diagram types addressing various aspects of a software system.

Those diagram types are categorized into structural diagrams showing the static structure of objects in a

system (e.g. Class Diagram, Component Diagram …) and behavioral diagrams describing the dynamic

behavior of objects in a system (e.g. Use Case Diagram, Activity Diagram …). UML Profiles and

Stereotypes further allow a certain degree of customization of the language. UML may be seen as a

natural descendant of the simpler and more focused ER modelling approach. While it shares ER’s

desideratum of code generation, it focuses on an object-oriented development context (e.g. class

definitions derived from class diagrams).

The IMKER case study

8

Petri Nets (PN) is one of the longest standing diagrammatic modeling methods, with minimal but

powerful semantics based on strong mathematical foundations. The core concepts are Places (states),

Transitions (changes, actions), and Arcs (indicating the flow) as well as Tokens (marks) which capture the

behavioral dynamics of a system. The firing (execution) of Transitions signifies an action taken by

passing the Tokens between their adjacent Places according to the defined flow. While the method is

sufficiently abstract to have cross-domain applicability with respect to process dynamics, it imposes

however a learning curve that is typically not acceptable for business stakeholders. Simulation

mechanisms, monitoring the possible states of the system as a whole through the firing of Transitions

and movement of Tokens (Token availability in a selected Place will enable the Transitions following that

Place), are employed to assess the reachability of certain states, the risk of deadlock and the

liveness/deadness of certain transitions.

4.1 Selected Modelling Examples
The following section contains some examples showing how certain cases can be modelled.

4.1.1 Process of registration for NEMO Summer School

This example from the NEMO Summer School 2016 illustrates how the process of registration can be

modeled using BPMN.

Process description: Students interested in participating at the NEMO Summer School are required to

submit an application. Thus when starting the application process the student must procure a

recommendation letter, write a motivation letter and compose her/his CV. Then she/he needs to fill out

the application form. Within the application form, the student must indicate whether she/he is applying

for financial aid or not. Before submitting the application the student attaches the three documents

mentioned above. When the application has been submitted the NEMO administrative staff receives a

notification e-mail that a new registration has been included in the database. The staff writes an e-mail

to the student confirming the receipt of the application. Subsequently, the staff checks whether the

application is complete. If the application is complete the documents are printed and put in a file to be

handed to the selection committee. If any information/document is missing the student is contacted via

e-mail and requested to provide the missing information/document within the next 2 weeks. After 2

weeks the NEMO administrative staff checks if the outstanding information/document has been

received. If the information has not been provided by the student or is still incomplete the staff writes

an e-mail informing the applicant that her/his application has been denied due to the failure to provide

a complete application file. The submitted documents and the rejection e-mail are archived and the

process ends. If the student has provided the requested information the documents are printed and put

in a file to be handed to the selection committee. The application documents are complete in 90% of

cases. In 5% of the cases, the student fails to provide the requested information/documents.

 The IMKER case study

 9

The IMKER case study

10

4.1.2 Data model for NEMO Summer School information system

This example from the NEMO Summer School 2016 illustrates how the requirements for an information

system can be used to model the data structure using an ER model.

Requirements: Participants at the summer school are either students or teachers. Each student registers

for the NEMO Summer School providing, amongst others, their level of study (Bachelor, Master, or PhD)

and their field of study. Additionally, each student provides her/his first name, last name, country of

provenience, and e-mail address. Students attend courses during the summer school. Courses can be a

lecture, a fundamentals exercise, or application exercises. [The fundamental exercise is considered as

one unit as it covers one topic, although it takes place in several sessions.] Each course has a title, is

being given by one or more lecturers, and takes place in a room. Every room has a name, a seating

capacity, and technical equipment. Lectures and application exercises take place in a lecture hall, while

fundamental exercises are conducted in PC labs. Within the fundamentals exercise students are split

into groups. Each group has a group number, a room (i.e. PC lab), and a tutor. Teachers can be either

lecturers or tutors. Each teacher has a first name, last name, host institution, and country.

 The IMKER case study

 11

5. A Specific Case
Consider the text below to be the transcript of an interview with a beekeeper1. While the interviewer

might direct the conversations at times, the actual questions are omitted and only the information from

the beekeeper is kept.

Paragraph 1: As a beekeeper, I currently tend to five hives spread across two apiaries. I put all of my

hives in places I can get to with my car since they can be quite heavy and it is easier to move them with

my pickup truck from one apiary to a different one or back to the tool-shed to perform some repairs.

Currently, I have three hives between Sherwood Forest and McJenkins field, Sherwood Forest being

west and McJenkins field being east of the apiary. This should produce some interesting honey with the

lime trees from Sherwood Forest and the sunflowers from the field. Of course, there is always some

wildflower nectar mixed in from the forest, since we can’t control the bees, but the majority of nectar

from the forest comes from the lime trees. I also have two hives south of McJenkins field, which will

only produce sunflower honey. This apiary is provided by McJenkins to help pollinate their sunflowers.

There is also Clover Fields way south of Sherwood Forest, which contains mostly thyme flowers and

maple trees. The state provides an apiary to the east of Clover Fields, number 352 I think, but I currently

don’t have any hives over there.

Paragraph 2: Now I gather, since you came to me asking about beekeeping, that you don’t yet know too

much about it. So let me tell you first a bit about some of the words we typically use before I give you

more details about my work. A group or family of bees is called a colony, which revolves around one

queen, and also has hundreds to thousands of drones and hopefully thousands of workers, but more

about those later. Now the colony has to live somewhere, like in a house, and this is called the hive and

they typically don’t share it with other colonies. As a beekeeper, I provide the hive to the colony by

stacking several different parts on one another, most notably specific boxes which we also call “supers”.

Those parts provide different functions, like a place for the brood or to store the honey. Supers for

breeding and storing honey generally contain frames in which the bees can build their honeycombs. We

also use a “queen excluder” to control in which honeycombs the queen can lay her eggs and where the

bees should store the honey. Naturally, we have to put the hives somewhere and this plot of land is

called the apiary, where the bees can go about their work. You have to excuse, we sometimes use “hive”

when we actually mean “colony”, but I’ll try to avoid this as much as possible.

Paragraph 3: So, my task as the beekeeper is to provide honey to the people. I have to harvest, bottle

and brand the honey before I sell it. Usually, I harvest most of the honey during autumn while the bees

are still active a bit and give the bees some sugar syrup as substitute food so they don’t starve in the

winter. During autumn and winter, I also have to support the bees, by giving additional food, protecting

them from pests and parasites, and the like. There are special mouse guards to prevent mice and other

rodents from getting into a hive, but sometimes they can chew through it. So when it’s cold and the

bees are mostly dormant I take care of the hives. However, it is important during that time to not

expose the bees to the cold. The bees keep the inside of the hive warm and opening one would drop the

temperature which could result in the colony’s death. Should I see that a colony has died out I remove

the hive from the apiary and clean it. If some parts of any hive or the apiary are damaged I repair them.

Also while it is still cold I use the time to move the hives on the apiary or between the apiaries, once

they are back in good shape.

1 The interview didn’t really happen, so certain details (personal information, locations etc.) are made up. The
information about bees and beekeeping has been taken from different sources on the internet (blogs, beekeepers
associations, Wikipedia etc.) with some creative freedom.

The IMKER case study

12

Paragraph 4: Once it gets warmer I do a more thorough inspection of the hives and their colonies, since

we can finally open them without exposing the bees to danger. Of course, I have to take care of the

hives also during spring and summer from time to time. Now, the bees do need some freedom and they

can go about their work without much interruption, so it’s enough to check on them once every two to

three weeks. If I should find a problem during the routine check, like damages after a storm, or should

some Varroa mites have nested in the hive, I have to take action. Parasites like Varroa and diseases of

different kinds are a problem and can lead to the death of a colony if not taken care of. The colony can

also be destroyed by outside dangers like predators. When the bees sense danger they emit a

pheromone so the other bees become alerted. To prevent the bees from becoming alerted and getting

stung while checking on the hive I have my smoker. The smoker emits a special smoke that calms the

bees down and masks the pheromones. If I need the smoker or not depends on how active the bees are.

Whether they are active or dormant is based on the availability of food sources, namely nectar and

pollen. When the plants stop their winter rest, the bees also become more active. Also, during the

second half of spring, the bees can swarm. Swarming is when the old queen and about half of the colony

leave to find a new hive, leaving the old hive to a new queen. So I have to prepare for that too by

providing a new place for the old colony to live and taking care of the new colony. My equipment, like

the smoker, also needs to be cleaned, maintained, and prepared, which I do at the beginning of the year

before I check for dead or damaged hives.

Paragraph 5: Various equipment helps me to perform my tasks, like protective clothing to prevent

stings or the aforementioned bee smoker to calm the bees. There are also special parts in the bee hive

to make my work easier, like a queen excluder that prevents the queen bee from going from one box to

another, so I don’t have to worry that I extract any bee larvae from there. Recently I have also invested

in a new machine2 to help me with extracting the honey from the honeycombs and bottling it. It helps

me greatly since all I have to do is put in are the frames with the honeycombs containing the honey,

some bottles, and the caps and the machine takes care of extracting and bottling the honey. I can even

reuse most of the frames with the honeycombs, and the bees also have less work since they don’t have

to rebuild them. The machine simply takes the honeycombs, removes the beeswax sealing away the

honey, and then starts extracting the honey from them by putting them in a centrifuge, spinning them

around and the centrifugal force takes care of the rest. It checks regularly if a frame is finished in which

case it is removed from the centrifuge. Once the machine extracted the honey it is filtered, although

that takes a bit more time. After filtering it puts 250 grams or a bit over half a pound in a bottle and

even puts the cap on it. So in the end I have the bottled honey ready to sell. The average honeycomb

yields around 200 grams or less than half of a pound, so not quite enough for a full bottle. As far as I’ve

seen the machine works in batches of four honeycombs and the centrifuge has room for three batches

at once.

Paragraph 6: I also have a log book where I keep most of the information which is important or I find

interesting. In there I write down about the different apiaries that are around with their owner's names

and general size available, which hives and colonies I have as well as keeping stock of the honey that has

been harvested both the total quantity and how much I have remaining. The honey I keep organized

based on its type, like sunflower honey, and the date it has been harvested. I also keep the “birth dates”

of my colonies and notes about their current state in the log book. For the hives, I keep track of how

they are built, which types of supers I use, how they are assembled, their size, and how many frames the

individual supers contain. I also keep short notes about the states of the individual parts of a hive if

something is out of the ordinary.

Paragraph 7: Now, I still haven’t told you how the bees actually make the honey. Well, when they have

to produce more honey they fly to a blooming flower and collect the nectar until their nectar stomach is

2 While the general description of the machine is based on reality, there has been taken quite a bit of creative
freedom to describe an interesting (and not necessarily available) machine here.

 The IMKER case study

 13

full. They have to visit several flowers to actually fill the stomach, so they additionally pollinate the

visited plants. Also, each plant provides a slightly different type of nectar, which leads to the different

colors and tastes of honey. Once the bee’s stomach is full they return to their hive where the nectar is

processed by several bees. This happens through the enzymes in their stomach, so they regurgitate and

exchange the nectar between one another. Once the nectar has been processed enough the bee

regurgitates it into a honeycomb and the bees start beating their wings around it to evaporate the

water, turning the nectar into honey. Then it is sealed with beeswax to be stored for the future or, well,

harvested by me. The bee also communicates the found sources of food to the other bees through a

special dance. This dance tells the other bees the direction, distance, and how plentiful the bounty is, so

they use this information when setting out to collect the nectar. And that is how bees create honey.

Paragraph 8: There are of course several types of bees in a colony, and they do more besides producing

honey. Everybody probably knows the normal bees which are the workers, of which there should be

thousands in a healthy colony, which makes counting them difficult so I don’t even try. Instead, I

estimate their number by counting how many leave the hive in a minute. Besides collecting and

processing the honey the worker bees also defend the colony and keep the hive clean and repair

honeycombs and other things with beeswax. Then there is also the queen, which is pretty much at the

center of the colony. She is the only one that lays eggs and can also control the behavior of the bees

through pheromones, for example, to start swarming. There are also typically hundreds to thousands of

drones in a healthy and active hive. Their function is only to mate with the queen, so she can lay

fertilized eggs.

Paragraph 9: Well, even though I would like to stay longer and tell you more about beekeeping and

bees, unfortunately, I have to go and take care of my bees now. But, I do hope that this was informative

for you and that you can get something out of it for your modelling lecture or something. Bye.

In addition to the modelling languages which are applied in the following exercises,

bee-up also supports:

Other modelling languages are also available in the bee-up tool library.

Decision Model and Notation (DMN):

An OMG standard (www.omg.org/dmn) for the

description of decisions and how to reach them. It uses

concepts like decisions, data and decision tables.

Flowcharts:

A language (ISO 5807) for describing processes step-by-step

and their control flow. It uses concepts like operations,

decisions and terminals, and can be executed if specified in

enough detail.

http://www.omg.org/dmn
https://www.iso.org/standard/11955.html

The IMKER case study

14

5.1 Exercises3
The task is to produce a conceptual model(s) in which we can find a syntactical and semantical

representation of the case. The scope of this representation is not only to understand how we can

support the case with information technology in a structural way, but also to optimize the possible

solutions according to the given target. The following table provides some hints on which paragraphs

contain useful information for the examples, based on the used modelling language.

BPMN Relevant Paragraphs: §3, §4; Useful Paragraphs: $2

EPC Relevant Paragraphs: §7; Useful Paragraphs: §2

ER Relevant Paragraphs: §1, §6; Useful Paragraphs: §2, §7, §8

UML Relevant Paragraphs: §1, §3, §4, §7, §8; Useful Paragraphs: §2

Petri Net Relevant Paragraphs: §5; Useful Paragraphs: §2

A categorization of IMKER text building blocks to modelling languages

Figure 2: The IMKER scenario through „Modelling Glasses“

1. Model a process applying the Business Process Model and Notation (BPMN).

New beekeepers should be supported in their introduction to beekeeping through a process model.

Describe what a beekeeper roughly does throughout the year to sell honey based on the text

provided. Focus on the major tasks and group them as necessary. Also, omit routine tasks and focus

on a more straightforward process, on the proper sequence of what is happening when in the year.

Lay out the process in such a way, that the “reward” (typically making money) is located at the end

of the process. Use common sense to bridge any gaps.

3 Sample solutions will be given in the tutorial.

 The IMKER case study

 15

2. Use an extended Event-driven Process Chain to describe the process.

An educational video should describe to people the bees’ role and work in the production of honey.

As a first step the information should be described as a process. Describe how the bees produce the

honey-based on the text provided. Think about the things that are performed by one bee, but not

necessarily always by the same bee (for simplicity, omit Organizational units). Consider where and

what information is exchanged. Appropriately indicate which activities are performed several times

and until when. Lay out the process in such a way, that the “reward” (in this case the honey) is

located at the end of the process. Use common sense to bridge any gaps.

3. Use an Entity-Relationship model to create a database design.

An IT system for beekeepers requires a design for the database. Describe a database design for

storing relevant information for a beekeeper based on the provided text. The database should also

keep track of the colonies a beekeeper has and consider what influences the different types of

honey and how. Add additional attributes where necessary. Use common sense to bridge any gaps.

4. Use different UML diagrams to describe different aspects of the system.

The system “beekeeping” should be described generally through several models to identify possible

applications of IT systems.

a. Use a UML State Machine diagram to depict the different states of a bee colony.

A system for tracking the condition of bees is to be designed, however first the relevant states

have to be determined. Describe the different states of a bee colony based on the provided

text. The model should consider two aspects: 1) the states about the wellbeing of the colony

and 2) the states influencing what the colony is actually doing. Focus on states concerning the

entire colony, not only a certain type of bees. Also provide some information about what the

beekeeper is doing during those states. Use common sense to bridge any gaps.

b. Use a UML Use Case diagram to describe the tasks of bees / beekeeper.

Software for simulating any hive should be implemented and as a first step the relevant use

cases that can happen there should be modelled. Describe the different types of bees and their

tasks based on the provided text. The model should also describe the tasks of a beekeeper

concerning the hive (not colony) and the harvesting of honey. The order of activities is

irrelevant here. Consider which generalizations of actors would make sense. Use common

sense to bridge any gaps.

c. Use a UML Deployment diagram showing the deployment of hives.

A system for managing the location of hives should be implemented. The initial idea is to use

deployment diagrams as a starting point. Describe the deployment of the hives the beekeeper

has based on the provided text. The model should describe the different apiaries, the

important information (concerning honey) about their surroundings, and how the hives are

currently deployed. Use common sense to bridge any gaps.

5. Use a Petri Net to describe the behavior of a machine.

The function of a special machine that extracts and bottles the honey should be determined to

identify possible bottle-necks. Describe the machine based on the provided text. It should start with

the honeycombs/frames ready for processing and end with the bottled honey. The model should

also capture the proper quantities of things. Use common sense to bridge any gaps.

The IMKER case study

16

6. The Bee-Up Environment
The Bee-Up Environment consists of several components, supporting different tasks when creating and

utilizing models. Those components will be further described in the following sections.

6.1 Annotator
An annotator is used to support the knowledge extraction of the main concepts in a domain from the

available sources of information. Most likely those information sources are textual descriptions or

transcripts, but other sources are also possible, like videos or raw data from log files. The Bee-Up

Environment provides an annotation tool specifically for this case study. It can be accessed on the Bee-

Up page in OMiLAB (https://bee-up.omilab.org) as the Annotation Service. This service, which runs in

the browser, allows to highlight parts of the text in one of four different colors, remove created

highlights, and save and load the current state in a special format. Additionally, it is possible to obtain

the highlighted text in a readable format through the browser's print functionality and store it for

example as a PDF or print it out on paper.

Figure 3: Screenshot showing part of the Bee-Up Annotation Service

For the annotation of other sources, the user can choose the tool whichever they feel the most

comfortable with and they deem appropriate for the given case. Some example tools for annotating

digital content are:

• Scrible© (https://www.scrible.com/) – different functionalities for annotation and organize

content are available in the basic (free) version

• Acrobat Reader© – provides commenting and highlighting tools for PDFs

• Microsoft Word© – has several features for highlighting and adding comments to texts

https://bee-up.omilab.org/
https://www.scrible.com/

 The IMKER case study

 17

6.2 Modeler
A modeler is implemented in Bee-Up using the ADOxx© (https://www.adoxx.org) metamodelling

platform, whose meta²- and meta-model is applied to provide a tool incorporating the different

modelling languages. The languages available in the modeler are the ones described in section 44, with

some general adaptations to provide additional options to the user or out of necessity.

Figure 4: Examples of some model types

6.3 Algorithms
Along with implementing the modelling languages as best as possible Bee-Up additionally utilizes some

processing functionality that is provided by the ADOxx platform. It also extends the processing

capabilities with additional mechanisms and algorithms available through the modeler, programmed as

an extension on top of ADOxx. Some examples for those are:

• A uniform simulation of process models (BPMN, EPC, UML Activity Diagrams). The simulation

can produce different types of results (path analysis, capacity analysis …) and allows different

approaches for its configuration (decisions based on probability and/or variable values, direct or

indirect assignment of performers …).

• Analysis of Petri Nets through manual or automatic execution of Transitions. Ready Transitions

can be fired individually or in bulk through an automatic simulation employing different

strategies and providing a result log.

• Generation of SQL-Create statements from an Entity-Relationship model (tested with MySQL).

Many different concepts are considered during the generation, like relation cardinalities, weak

entities, and foreign keys. SQL-specific details like datatypes are handled through special

attributes.

• Inspection of any model using the ADOxx Query Language (AQL) allows answering certain

questions (e.g. all Tasks with an execution time above a threshold). The writing and execution of

queries are also supported through a graphical user interface.

• Export of models in different formats (XML, RDF, ADL) and generation of graphics depicting the

model (JPG, PNG …). Some formats (XML, RDF) can be used to further process the model

contents outside of Bee-Up.

4 Bee-Up claims neither full compliance nor conformance with the specifications of those languages. It does
however provide a usable implementation based on available specifications.

https://www.adoxx.org/

The IMKER case study

18

This allows Bee-Up to be applied in a wide range of areas, from the use in university courses, through

business process management, to the description of IT system requirements. An extension of the

application area is also achieved by integrating the implemented modelling languages with other types

of models and common concepts. For example, the model types supporting the simulation of process

models can reference performers from a Working Environment model to conduct a capacity analysis or

every model provides a Note concept to provide additional information for the human reader of a

model or the use of common attributes (Description, Comment, Open questions) in almost every object.

Figure 5: A visualization of the algorithms

6.3.1 Bee-Up: Queries

Bee-Up allows using the AQL (ADOxx Query Language) to perform queries on selected models, which

return either a set of drawn objects or relations. Those queries can ask for specific objects or relations of

a model based on their name, based on their type, based on their attribute values, based on relations

between them, or a mixture of those. Besides answering questions of the user through queries, AQL is

also used to link concepts of different models for specific functionality, like in the simulation provided by

the platform. Instead of directly linking the performer of a task/activity an AQL query is provided. This

AQL query returns a set of possible performers from which one is then chosen during certain process

simulations.

AQL queries use concepts close to how models are structured in ADOxx and thus concepts of graphs in

general (e.g. “get all nodes of type X”, “get all nodes with an attribute of value X”, “get all nodes that are

connected to node X” etc.). The idea behind Extended Queries is to allow queries based on concepts

from relational databases, more specifically to allow SQL queries. Those queries help answer more

complex questions through the availability of special comparison functions, aggregation functions,

ordering of results, use of variables, and other features provided by the employed Database

Management System.

Figure 6 shows the relevant concepts in this approach, with the models, meta-model, and the data store

in the center. The Bee-Up tool based on ADOxx uses all three to provide its functionality, including the

execution of queries using AQL. An additional database structure, which shall then contain the data of

the models, has to be provided so Extended Queries can be executed.

 The IMKER case study

 19

Figure 6: Bee-Up Tool, AQL and Extended Queries

Following is a description of how the database structure for Extended Queries can be derived for the

BPMN modelling language with examples of how it can be applied. This can be used as a basis for the

other modelling languages of Bee-Up to derive their database structure.

Business Process Model and Notation

Examples for meaningful extended queries performed on BPMN models would be:

• All decisions that split the path – in the context of IMKER this query could allow determining all

the decisions a beekeeper has to make.

• All communication between participants of the process including direction and exchanged

messages (if available) – in the context of IMKER this query would indicate what information is

exchanged between whom in a process depicting the processing of an order.

The meta-model provided in Appendix I (Bee-Up Handbook) section 5.1 together with the Bee-Up tool

implementation can be used to derive a relational data structure for BPMN. The Bee-Up tool is used to

determine details that are not covered by the provided meta-model, like specific attributes available. In

general, a relation with a primary key, foreign keys, and other attributes will be described for the

relevant elements, namely the classes and the relations between classes (called relation classes in this

text to distinguish from the relational data structure). An approach similar to weak entities is used to

depict the class hierarchy to properly allow the use of foreign keys for relation classes. Certain relations

will be added to further provide type semantics and common attributes, like __Activity__ between __D-

construct__ and the relation depicting a BPMN Task.

The here presented relational data structure will not cover the entire BPMN Modelling Language,

instead of focusing on providing the tables necessary to cover at least some cases. Some of the here

omitted classes and relation classes are Group, Text Annotation, Association, Data Object, Conversation,

and Data Association. Primary keys are indicated by bold and underlined text. Foreign keys are identified

by italic and underlined text. The relational data structure is split into three categories:

The IMKER case study

20

General abstract tables

This category describes general tables which can be used also by other modelling languages besides

BPMN (e.g. EPC, UML, etc.). Abstract is meant here in the sense that for each of their rows there should

also be corresponding rows in other tables to simulate the class hierarchy. Those are used to a) provide

proper tables for foreign keys of certain relations and b) add overarching semantic to the elements (e.g.

BPMN Task, EPC Function, and UML Activity as “sub-types” of __Activity__).

• __D-construct__ (ID, name, modelID) – General table that represents any object in the model
that is not a relation. Names have to be unique and not null. modelID is a foreign key
referencing the ID of a specific model where the object is used. Almost anything that isn’t an
instance of relation class or a model can be considered a “Weak entity” of __D-construct__.

• __D_container__ (ID) – Denotes objects that can contain other objects. ID is also a foreign key
from __D-construct__.

• __Activity__ (ID, time, cost) – A general table for representing activities of any type. ID is a
foreign key from __D-construct__.

• __Split_Merge__ (ID, type) – A general type for representing objects that can split or merge the
path of a process. The type should denote how the split/merge should be interpreted (i.e. XOR:
follow only one path, OR: follow several paths, AND: follow all paths). ID is a foreign key from
__D-construct__.

• __Subgraph__ (ID, refModelID) – A general table for representing anything that can be further
detailed by a model. ID is a foreign key from __D-construct__ and refModelID is a foreign key
from Model, indicating in which model the details are provided.

• __Start__ (ID) – A general table for representing anything that starts a process. ID is a foreign
key from __D-construct__.

• __End__ (ID) – A general table for representing anything that ends a process. ID is a foreign key
from __D-construct__.

General tables

This category describes general tables which make sense to be used also by other modelling languages

besides BPMN (e.g. EPC, ER, etc.).

• Model (ID, name, type) – Depicts a specific model in which objects are present.

• Is_inside (sourceID, targetID) – Depicts which elements are in which container. sourceID is a
foreign key from __D-construct__ and targetID is a foreign key from __D_container__.

• Subsequent (sourceID, targetID, denomination, probability) – Depicts the relations between the
preceding and the following object in the process. The denomination can be used to denote
conditions. Both sourceID and targetID are foreign keys from __D-construct__.

• Note (ID, content) – Depicts a note that can be attached to any object. ID is a foreign key from
__D-construct__.

• has_Note (sourceID, targetID) – links an object to a note about it. sourceID is a foreign key from
__D-construct__ and targetID is a foreign key from Note.

Note: instances of relation classes belong to the model where their source and target are located.

BPMN specific tables

This category describes tables that are specific to BPMN models.

• Message (ID, description, objectType) – Depicts a specific message that can be exchanged
between two participants. The objectType indicates if it represents a physical message or just
information. ID is also a foreign key from __D-construct__.

• Message_Flow (sourceID, targetID, denomination) – Depicts the flow of messages between
objects in a specific direction. Both sourceID and targetID are foreign keys from __D-
construct__.

• Pool (ID, processType, description) – Depicts a pool in the process (a Participant). ID is also a
foreign key from __D_container__.

• Lane (ID, description) – Depicts a lane that further divides a pool. ID is a foreign key from
__D_container__.

 The IMKER case study

 21

• Task (ID, type, loopType, description) – Depicts a specific task that is performed. Type identifies
what sub-type of a task this is according to BPMN (service, send, receive etc.). loopType
identifies what type of loop is used (e.g. NULL = no loop, 0 = standard loop, 1 = multi-instance
loop). ID is a foreign key from __Activity__.

• Sub_process (ID, loopType, description) – Depicts a Task that is further described by another
process model. loopType identifies what type of loop is used (e.g. NULL = no loop, 0 = standard
loop, 1 = multi-instance loop). ID is a foreign key from __Subgraph__.

• Exclusive_Gateway (ID, description) – Depicts a point in the process (e.g. a decision) that either
selects one following path or continues if at least one incoming path has been triggered (or both
merge and split at once). ID is a foreign key from __Split_Merge__ and the type should always
be XOR.

• Non_exclusive_Gateway (ID, description) – Depicts a point in the process (e.g. a decision) that
either splits into or merges from several or all paths. ID is a foreign key from __Split_Merge__
and the type should either be OR or AND.

• Start_Event (ID, trigger, description) – Depicts the start of the process and what triggers it. ID is
a foreign key from __Start__.

• Intermediate_Event (ID, attachedTo, isCatching, isInterrupting, trigger, description) – Depicts an
intermediate event according to BPMN. isCatching states if the task catches or throws the event,
while isInterrupting is used only for events that are attached to a task (whether they interrupt
the task or not). The trigger describes which trigger the event catches/throws. ID is a foreign key
from __D-construct__ and attachedTo is a foreign key from __D-construct__ indicating if the
intermediate event is attached to a boundary of a task or sub-process.

• End_Event (ID, trigger, description) – Depicts the end of the process and what it triggers. ID is a

foreign key from __End__.

A part of this relational data structure with some abstract examples is visualized in the following picture,

where the columns containing the primary key are in bold and underlined and foreign keys are italic and

underlined and are visualized through the arrows:

The IMKER case study

22

Based on this structure the question “Which decisions have to be made in the process?” can be

answered using an SQL query (for SQL Server 2012):

SELECT dc.id, dc.name
FROM [Subsequent] AS subs
 INNER JOIN [__D-construct__] AS dc ON dc.id=subs.sourceID
 INNER JOIN [__Split_Merge__] AS sm ON sm.ID=dc.ID AND

(sm.type='XOR' OR sm.type='OR')
GROUP BY dc.id, dc.name
HAVING COUNT(subs.sourceID)>1;

This query looks for all decisions in the __Split_Merge__ table that have an ‘XOR’/’OR’ type and only

selects the ones that have more than 1 outgoing subsequent relation.

Event-driven Process Chains

Examples for meaningful extended queries performed on EPC models would be:

• All Information objects used as input and where they are used, ordered by how often the

Information object is used in total – in the context of IMKER when using models that describe

the behavior of bees this could help analyze information exchange between bees and with their

environment, focusing on the ones exchanged most often.

• All functions that have more than one responsible assigned – in the context of IMKER when

implementing an ERP system this query would indicate tasks that apply the four-eye principle.

• All documents that have to be signed by multiple people – an extension of the previous query

focusing on the signing of documents instead of tasks.

The meta-model provided in Appendix I (Bee-Up Handbook) section 5.2 together with the Bee-Up tool

implementation can be used to develop the data structure for extended queries in EPC, similar to how

the extended queries for BPMN have been developed in the previous section.

Entity-Relationship

Examples for meaningful extended queries performed on ER models would be:

• All “ER Relations” that use more than one cardinality >1 – in the context of IMKER this query

would help create the database by showing all “ER Relations” that require their own table.

• All attributes and for which entities they should be available with the order based on the names

of the entity, resolving special cases like weak entities – in the context of IMKER this query

would help to see all the data considered relevant for each entity of the data model.

The meta-model provided in Appendix I (Bee-Up Handbook) section 5.3 together with the Bee-Up tool

implementation can be used to develop the data structure for extended queries in ER, similar to how

the extended queries for BPMN have been developed in a previous section.

Unified Modeling Language

Examples for meaningful extended queries performed on UML models would be:

• All components and the components they are linked to through interface requirement and

implementation – when using a deployment diagram to describe hive placement and available

nectar sources in the context of IMKER this query can help determine what types of honey each

hive will produce.

• All activities/actions that are executed in a specific state diagram and because of which state

they are executed – in the context of IMKER this query would return the activities/actions which

have to be performed by the beekeeper depending on the state of a bee hive.

The meta-model provided in Appendix I (Bee-Up Handbook) section 5.4 together with the Bee-Up tool

implementation can be used to develop the data structure for extended queries in UML, similar to how

the extended queries for BPMN have been developed in a previous section.

 The IMKER case study

 23

Petri Nets

Examples for meaningful extended queries performed on PN models would be:

• Determine how often a transition could fire if certain preceding places are ignored – for a

machine that extracts and bottles honey in the context of IMKER this query would check how

many bottles of honey could be produced (based on the current stock of bottles and caps) while

ignoring how much honey is actually available or alternatively if only honey is available then

how many bottles and caps would be needed to bottle it all.

• Determine how often each transition would have to fire to enable a follow-up transition (with

only one place in between) – in the context of IMKER and the machine extracting honey this

query could be used to analyze bottle necks of the machine.

The meta-model provided in Appendix I (Bee-Up Handbook) section 5.5 together with the Bee-Up tool

implementation can be used to develop the data structure for extended queries in PN, similar to how

the extended queries for BPMN have been developed in a previous section.

6.3.2 Bee-Up: RDF Export

Bee-Up contains a description of its meta-model in RDF and provides functionality to export models in

RDF as well. This allows the models created in Bee-Up to be used with concepts and technologies from

the Semantic Web, like Linked Data, SPARQL, or the Web Ontology Language (OWL), allowing for

different utilizations of the model data. Examples would be linking with other resources from the

Semantic Web, executing rules to check the consistency of models or inference of new data, and

performing queries using SPARQL.

Figure 7 shows a quick overview for the exposure of models as RDF, with the models, meta-model, and

the data store in the center. The Bee-Up tool already has the RDF description of the meta-model and

provides functionality for the transformation of model data to RDF as an RDF Export. Both the meta-

model and model descriptions as RDF can then be used with Semantic Web technologies.

Figure 7: Bee-Up, RDF and Transformation

The IMKER case study

24

The RDF descriptions use certain constructs aligned with RDFS to properly describe the meta-model and

models and the functionality is based on a prototype developed in the ComVantage project (see

http://www.comvantage.eu/, accessed 28.02.2017). The following table5 describes some of those

general constructs:

Specific RDF constructs

Some general constructs are to be used as types.
The cv: prefix stands for “http://www.comvantage.eu/mm#”

Construct Description

cv:m_Model A class containing models, meaning that a resource of this type
represents a model. For example, EPC Model is a subclass of this.

cv:o_Modelling_object A class containing elements used in models. For example, the
class Activity is a subclass of this class.

cv:r_Modelling_relation_a A class containing relations that have properties (attributes). The
resources also use cv:from and cv:to to indicate the source and
target of the relation. For example, the relation Subsequent is a
subclass of this class.

cv:r_modelling_relation_na A class of properties containing relations without properties
(attributes). For example, the inter-model reference Responsible
of a Task is an instance of this class.

cv:a_attribute A class of properties containing concept properties (attributes).
For example, the attribute Task type of a Task is an instance of
this class.

cv:described_in A property stating that additional information about the subject
(e.g. element, relation) can be found in a specific graph.

cv:from A property providing the source of relation with properties (i.e. of
cv:Modelling_relation_a type). The subject is the relation and the
object is the source.

cv:to A property providing the target of relation with properties (i.e. of
cv:Modelling_relation_a type). The subject is the relation and the
object is the target.

Table 1: Specific constructs for RDF export

Together with those constructs, certain rules are used to export the models as RDF descriptions. The

following table5 describes some of those rules:

Model level

Note: “corresponding X” should be understood in context to the Metamodel level. For example when
an instance of type “Activity” is transformed, then “the corresponding Object type class” means the
concept created for the “Activity” object class (e.g. mm:o_Activity).

Modelling Concept Linked Data mapping

Any Model is … • An instance of the corresponding Model type class.

• An RDF-Graph (called model graph).

Any Object is … • An instance of the corresponding Object type class in every
model graph where it is used.

5 Adapted from ComVantage Deliverable 3.1.2 – Specification of Modelling Method Including Conceptualisation
Outline.

http://www.comvantage.eu/

 The IMKER case study

 25

Any Relation with attributes is
…

• Instance of the corresponding Relation type class in every
model graph where it is used.

• It also has two properties indicating the source and target
using cv:from and cv:to.

Any Relation without attributes
is …

• A triple where the subject is the source element and the
object is the target element. The predicate should use the
corresponding Relation type property. If the two elements
are in different models then the statement should also be
in both model graphs. The cv:described_in property should
be used to state in both graphs where the other element
can be found.

Any (not table) Attribute value
is …

• The object of a triple where the subject is the element and
the predicate is the corresponding Attribute property.

Table 2: Some of the rules employed in the RDF export

The RDF descriptions can then be used for example with an RDF store like rdf4j to execute SPARQL

queries. The following SPARQL query answers a question that has also been asked in section 6.3.1,

“Which decisions have to be made in the process?” for BPMN processes:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX cv: <http://www.comvantage.eu/mm#>
PREFIX mm: <http://austria.omilab.org/psm/content/bee-up/1_2#>
PREFIX : <http://austria.omilab.org/psm/content/beeup/IMKER#>

SELECT (?decision AS ?id) (?label AS ?name)
WHERE {
 # This union merges the two different possible types of gateways denoting a decision.
 { # This pattern fits any OR Gateway that splits the paths.
 ?decision a mm:o_Non-exclusive_Gateway_BPMN .
 ?decision mm:a_Gateway_type "Inclusive"
 } union { # This pattern fits any XOR Gateway.
 ?decision a mm:o_Exclusive_Gateway_BPMN
 }
 # This pattern matches subsequent relations which originate in one of the decisions.
 ?subsequent a mm:r_Subsequent .
 ?subsequent cv:from ?decision .
 ?decision rdfs:label ?label # This pattern retrieves the label of the decision.
}
GROUP BY ?decision ?label # Filters out any decision that has 1 or less subsequent paths.
HAVING (count(?subsequent)>1)

This query binds anything that denotes a BPMN decision and its relevant data and only selects the ones

that have more than 1 outgoing subsequent relation.

The IMKER case study

26

6.3.3 Bee-Up: Generate SQL

Besides being able to model Entity-Relationship models, it is also possible to use them in Bee-Up to

generate the SQL statements for creating tables. Used together with a database, it creates the table

structure described by the ER model. Figure 8 shows a quick overview for the generation of the SQL

statements, with the models, meta-model, and the data store in the center.

Figure 8: Bee-Up and SQL generation

The functionality covers many different cases that can be described in an ER model and tries to achieve

a good structure for the tables based on that description of the data structure. Some of those are the

handling of relations based on the specified cardinalities, the resolution of weak entities and their

dependencies, and the inheritance between entities.

The following ER model depicts for example part of the database structure for the Business Process

Model and Notation from section 6.3.1. It should be noted that not all information of the model is

visible in the picture, like the SQL datatypes of attributes, or the role names used for foreign keys to

prevent name clashes.

 The IMKER case study

 27

Following is a part of the code generated when using the above ER model with the generate SQL

functionality (Some comments have been left out to save on space):

CREATE TABLE Subsequent (
 source_ID VARCHAR(32) NOT NULL,
 target_ID VARCHAR(32) NOT NULL,
 denomination VARCHAR(128),
 probability FLOAT,
 CONSTRAINT pk_Subsequent PRIMARY KEY (source_ID,target_ID)
);

CREATE TABLE __D_construct__ (
 ID VARCHAR(32) NOT NULL,
 name VARCHAR(128),
 model_ID VARCHAR(32),
 CONSTRAINT pk___D_construct__ PRIMARY KEY (ID)
);

CREATE TABLE Model (
 ID VARCHAR(32) NOT NULL,
 name VARCHAR(128),
 type VARCHAR(128),
 CONSTRAINT pk_Model PRIMARY KEY (ID)
);

CREATE TABLE __Activity__ (
 ID VARCHAR(32) NOT NULL,
 time TIME,
 cost FLOAT,
 CONSTRAINT pk___Activity__ PRIMARY KEY (ID)
);

CREATE TABLE __Split_Merge__ (
 ID VARCHAR(32) NOT NULL,
 type CHAR(3),
 CONSTRAINT pk___Split_Merge__ PRIMARY KEY (ID)
);

ALTER TABLE Subsequent ADD CONSTRAINT fk_Subsequent_source___D_construct__ FOREIGN KEY
(source_ID) REFERENCES __D_construct__(ID);
ALTER TABLE Subsequent ADD CONSTRAINT fk_Subsequent_target___D_construct__ FOREIGN KEY
(target_ID) REFERENCES __D_construct__(ID);
ALTER TABLE __D_construct__ ADD CONSTRAINT fk___D_construct___model_Model FOREIGN KEY
(model_ID) REFERENCES Model(ID);
ALTER TABLE __Activity__ ADD CONSTRAINT fk___Activity_____D_construct__ FOREIGN KEY (ID)
REFERENCES __D_construct__(ID);
ALTER TABLE __Split_Merge__ ADD CONSTRAINT fk___Split_Merge_____D_construct__ FOREIGN KEY
(ID) REFERENCES __D_construct__(ID);

6.4 Wiki
A wiki is provided on the Bee-Up OMiLAB page6, where users have the ability to exchange information

and knowledge about the domains they are working on and to clarify aspects that might have led to

confusion or posed problems. This in turn should allow the users to improve the quality of their models.

6 Available at http://austria.omilab.org/psm/content/bee-up/wiki?view=wiki (accessed 08.02.2017) based on
GWiki by Micromata (https://labs.micromata.de/projects/gwiki.html accessed 08.02.2017).

http://austria.omilab.org/psm/content/bee-up/wiki?view=wiki
https://labs.micromata.de/projects/gwiki.html

The IMKER case study

28

Appendix I: Bee-Up Handbook
 www. .org

1. General information
This Handbook is written for Bee-Up version 1.3 based on the
ADOxx 1.57 platform. The Bee-Up tool enables modelling
according to the following languages and techniques:

• Business Process Model and Notation 2.0 (BPMN),

• Event-driven Process Chains (EPC) with extensions,

• Entity-Relationship (ER), and

• Unified Modeling Language 2.0 (UML)

• Petri Nets (PN).

If you should encounter problems, have questions or feature requests which are not covered yet, you
can also contact the Bee-Up support team directly at bee-up@omilab.org

2. Installation
The Bee-Up tool requires a Windows operating system (XP, Vista, 7, 8, 8.1 or 10). To install it on a

different OS please use virtualization software (e.g. VirtualBox or VMware)8 and a windows license9.

To install the Bee-Up tool follow these steps:
1. Download the ZIP-File containing the installation package from OMiLAB.
2. Extract the contents to a folder.
3. Run the setup.exe from the extracted folder.

The setup first informs about prerequisites that will be installed automatically. This includes required

frameworks (e.g. .NET) and the creation of a SQL Server instance where necessary. Once those tasks are

finished a wizard will guide you through the remainder of the installation.

Note that if the setup automatically created a SQL Server instance, it is called ADOXX15EN and has set

the initial ‘sa’ password to ‘12+*ADOxx*+34’ (without the ‘ ’). If you want to use an already available

SQL Server database instance, it has to use “Mixed mode” for authentication. Should you no longer

remember the ‘sa’ password: help on how to reset the ‘sa’ password can be found at the ADOxx.org

community.

By default Bee-Up 1.3 will create and use the database with the name ‘beeup13’ (without the ‘ ’) unless

a different one has been specified during the installation (for example when ‘beeup13’ is already used

by something else).

Some additional functionality provided by Bee-Up (beyond simple modelling, e.g. RDF Export) also

requires a functioning Java 1.8 installation. A download link and installation instructions can be found at

https://java.com.

7 http://www.adoxx.org/
8 Obtainable from https://www.virtualbox.org/ or http://www.vmware.com/ respectively
9 As a student of computer science on the University of Vienna you can get access to different versions of windows
at http://cs.univie.ac.at/students/info/software/msdn/

http://www.omilab.org/
mailto:bee-up@omilab.org
http://austria.omilab.org/psm/content/bee-up/download
https://www.adoxx.org/live/faq/-/message_boards/message/19635
https://www.adoxx.org/live/faq/-/message_boards/message/19635
https://java.com/
http://www.adoxx.org/
https://www.virtualbox.org/
http://www.vmware.com/
http://cs.univie.ac.at/students/info/software/msdn/

 The IMKER case study

 29

2.1 Things to watch out for before/during/after installation

2.1.1 Before the installation

1. Language for non-Unicode programs: Make sure that the “Language for non-Unicode programs” of
the operating system is set properly. This setting can be found in the “Control Panel” under “Region
and Language” in the “Administrative” tab, as shown in the picture below. Languages like English
and German are known to work for Bee-Up among others. Similar languages should most likely
pose no problem. Languages using characters that are very different from English (like Greek,
Persian, or Chinese) can however pose a problem. If an error saying “The selected database does
not exist or has not been cataloged yet.” is encountered during the installation or an error like
“Database … does not exist!” pops up when starting the tool after the installation, then it’s most
likely due to this setting. In this case please uninstall the tool and the SQL Server instance
“ADOXX15EN”, change the setting, and install Bee-Up again.
Alternative: It might also be possible to work with a different “Language for non-Unicode

programs”, which however requires a manual installation of the SQL Server instance. A detailed

step-by-step guide can be found at the ADOxx homepage (Download → Windows Installation Guide

→ Installation of different collation database (Non-Latin Database Instance)). Please note that this

has not been tested by our developers for Bee-Up.

2.1.2 During the installation

1. Installation of SQL Server instance fails: It is possible that the installation of the SQL Server
instance fails, typically with an error message like “Failed to install Microsoft SQL Server (instance
ADOXX15EN). Please check for errors and try again.”, in which case the tool will not be properly
installed. One of the reasons is that the SQL Server installer performs a check and the system
doesn’t meet the necessary requirements. One of the requirements is that a system restart is

https://www.adoxx.org/live/installation-guide-15-other-collation

The IMKER case study

30

possible. Sometimes a different application can block the system restart, leading to the problem. So
one possible solution is to close all other applications, restart the computer and then perform the
installation. Another approach is to manually install the SQL Server instance beforehand. Detailed
descriptions for this can be found in the “dbinfo” folder (the PDF files with “install” like “BOC-
Product_sqlserver_2008_express_install_en.pdf” are relevant, not “createdb”) and the folder
“SQLExpress” folder contains an installation file for the SQL Server. Please note that the “Instance
ID” MUST be “ADOXX15EN”!

2. The installation asks for standard administrator “sa” password: Sometimes during the installation,
a popup can ask for the database standard administrator password (see picture below). Some users
reported, that after aborting the installation and restarting the computer the popup no longer
appeared. Alternatively, if the SQL Server instance has been created automatically by the
installation, then it has set the initial ‘sa’ password to ‘12+*ADOxx*+34’ (without the ‘ ’). Help on
how to reset the ‘sa’ password can be found at the ADOxx.org community (in the FAQ: “SA
Password during ADOxx Installation”).

2.1.3 After the installation

1. Database connection failed: Bee-Up uses a database to store all the information in the background.
Therefore during the installation, an SQL Server instance is automatically created. However, it can
happen when starting the tool that an error is encountered with the message “ADOxx could not
connect to the database …! Please try again.” This can happen when the database service is not
running. Please make sure that the proper SQL Server service is running (“SQL Server
(ADOXX15EN)” in the services panel of Windows) and try starting Bee-Up again.

2. Losing connection to the database while the tool is running: On some systems (especially when
using Windows 10) it can happen that the connection from Bee-Up to the database is lost, usually
with an error message like “Due to a database exception the connection has been closed …” This
often happens due to long inactivity which can lead to a connection time out. Unfortunately, a
consequence of this is a loss of all the changes that have been made since the last save. It can
however often be prevented from happening by opening the “SQL Server Configuration Manager”
tool, selecting “Protocols for ADOXX15EN, and disabling both “Named Pipes” and “TCP/IP” as
shown in the picture below.

http://www.adoxx.org/live/faq/-/message_boards/message/19635

 The IMKER case study

 31

2.1.4 Uninstallation

Yes, it is also possible to uninstall Bee-Up if so wished or necessary. Please note that this will of course

also delete all the created models that are stored in the database. Therefore it is advised to first back up

everything from Bee-Up that should be saved using the Export functionality (see section “Exporting and

importing models”).

To completely uninstall Bee-Up, two things should be performed:

1. Uninstall the Bee-Up tool – This can simply be achieved through the systems control panel.

2. Uninstall the Microsoft SQL Server – Here the SQL Server instance used by Bee-Up (“ADOXX15EN”)
should be uninstalled, again using the control panel. IMPORTANT: This will also remove all the data
stored in all the databases of the SQL Server instance. If other ADOxx based tools have been
installed and use the “ADOXX15EN” instance, or other relevant data has been put there, then it is
not advised to uninstall the SQL Server instance, since it could break the other applications!

The IMKER case study

32

3. Modelling with the Bee-Up tool

3.1 Tool overview
When first starting the Bee-Up tool you see a screen similar to the following one (without the numbers):

At the top is the menu bar with different menu items for direct access to some of the platform's

functionality. The numbered elements of the above picture are:

1. The Toolbar with icons as shortcuts for different functions. On the left side of the toolbar is the
component selection:

This changes which menus, menu items, and toolbar icons are available. The two important
components are “Modelling” (left most icon) and “Import/Export” (right most icon). The current
section of this document focuses on the “Modelling” component, while the next will describe
some functionalities of the “Import/Export” component.

2. The Start Page is visible, showing recently opened models. The Start Page can be accessed

through the house icon in the Toolbar. Once a model is opened it will be shown instead of
the Start Page. This area is then referred to as the Modelling area.

3. The Modelling window shows the modelling objects and relations available for the currently
opened model (in the figure above none because no model is open).

4. The Explorer window shows all folders (called model groups) and the models, stored in a model
group. Initially, model groups for all exercise sheets are preconfigured, accompanied by a testing
model group.

5. The Navigator window shows an overview of the currently opened model.

1.

5.

2.

4.

3.

 The IMKER case study

 33

3.2 Creating a new model
In order to create a new model select the menu item “Model → New…” while in the “Modelling”

component (left most icon in the Toolbar).

This will open the dialog shown below (without the numbers):

In this dialog first select the appropriate filter for the model types (e.g. Entity-Relationship for ER-

models), either by using the graphic on the left side (1.) or the dropdown-list in the middle (2.).

Afterward, select the desired model type from the list in the middle (3.). Then enter a name

(mandatory) and a version (optional) on the right side (4.). Finally, select to which exercise sheet (model

group) the model should be assigned10 (5.) and click on “Create”. Please use the appropriate model

group for your case (i.e. if it is a solution for a specific assignment, use the corresponding model group).

This will create an empty model of the selected modelling technique, store it in the selected model

group, and open it, ready to be edited.

10 Or select „Testing“ (model group) when you are creating a model for testing purposes (e.g. to see how
everything works, play around, explore the tool etc.).

1. 2.

3.

4.

5.

The IMKER case study

34

The picture above shows an example of a newly created and opened Entity-Relationship model. The

Modelling area (2.) now shows the empty Drawing area (a white canvas to drag & drop objects and

relations) instead of the Start Page. The Modelling window (3.) shows the available types of objects and

relations that can be used for ER modelling, e.g., Entity, Relationship, Attribute. The created model can

also be seen in the Explorer window (4.) under the selected exercise sheet (model group). The

Navigator window (4.) shows the complete model, enabling direct navigation and zooming, as well as

the portion that is currently shown in the Modelling area.

3.3 Editing the model
To edit a model it has to be opened in the Bee-Up tool. The easiest way to open a model is to double

click on its name in the Explorer window. New objects can be added to the model by selecting the type

of object that should be added in the Modelling window and then clicking in the Modelling area where

the object should be placed. If necessary the Drawing area will be extended automatically. After adding

a few objects, the Modelling area could look like this:

2.

4.

3.

5.

 The IMKER case study

 35

In order to connect objects with relations, first select the relation type from the Modelling window.

Then click in the Modelling area on the object that is the source (“starting point”) of the relation and

then on the object that is the target (“ending point”) of the relation. Certain types of relations can only

be used between specific types of objects (e.g. “has Attribute” always has to target an “Attribute”). The

previous example with some relations could look like this:

All objects can be moved in the Modelling area by selecting them and moving them accordingly. Some

objects can also be resized, which works similar to resizing windows in the operating system (drag the

side/corner when it is selected). For both the “Edit” function has to be selected in the Modelling

window (looks like the default mouse cursor). After creating objects and relations you can quickly switch

back to “Edit” by pressing the right mouse button. It is also possible to move/resize several objects at

once by selecting them first (draw a selection box around them, SHIFT+Click, CTRL+Click) and then

performing the move or resize. The difference between SHIFT+Click and CTRL+Click is that using SHIFT

will select the object and all of the objects it contains if it is a container (like a “Package”, “State”,

“Combined Fragment”, “Lifeline” etc.) while using CTRL will not. This is useful when a container should

be moved with all of its contents at once.

3.4 Adding edges to relations
It is also possible to add bend points to relations. Those force the relation to be drawn through that
point and can increase the readability of the created models. The following image shows a relation with
six bend points (small white rectangles):

Bend points can be added either during the creation of the relation, or afterward. To add bend points

during the creation first click on the source, then click on the desired points in the Modelling area where

a bend point (i.e. an edge) should be drawn, and finally click on the target object. To add them after the

relation has been created, select the relation first and then click and drag a point of the relation (that

isn’t already a bend point) to the desired place on the Modelling area.

The source or the target of a relation can also be changed by selecting the relation and then clicking the

yellow circle at the beginning of the end and dragging it to the new object that should be the source or

target. The green diamond that is visible when a relation is selected can be used in many cases to move

the text that is visualized next to it (e.g. the cardinality of the “Links” relation; ‘m’ in the figure above).

The IMKER case study

36

3.5 Editing attributes
All objects, models, and relations can have editable attributes, which can also influence their

visualization in the Modelling area (e.g. weak entities have a double outline instead of a single one).

Those attributes can be accessed by double-clicking on the object or relation (or selecting it and then

pressing Enter). This opens up the ADOxx Notebook, which contains the attributes that can be edited.

To access the attributes of a model it has to be opened first and then select the menu item “Model →

Model attributes” or press ALT+Enter. The following picture shows an example of a Notebook:

The attributes take up the largest portion of the Notebook and are categorized in different tabs,

available on the right side of the Notebook. Depending on the attribute type different editors for the

attribute value are available (e.g. single-line text field for the Name, multi-line text area for the

Description, checkbox for the Weak entity, etc.). For some attributes, an alternative editor can be

accessed through the button. Also, additional information is available for most of the attributes and

can be accessed by clicking on the icon. A similar icon can be found at the top right (underneath the X

for closing the window), which provides information about the type of object. The two buttons at

the lower right are an alternative to switching between the different categories. They are also used to

switch between pages of one category, in the case that more attributes are available than can be shown

in the Notebook window.

There are two special types of attributes that have to be described in more detail:
1. Inter-model references – they allow to link (reference) to one or several other objects or models

and have three special icons: . The first one (+) allows adding new references, while the
second one (X) removes the selected references. The third one (→) is like a hyperlink that jumps
to the referenced object. Often when the attribute value is visualized it also works as a hyperlink
in the Modelling area.

2. Tables – they allow storing more complex attribute values in a structured way. They also have
two special icons: . The first one (+) is used to add a new row at the end and the second
one (X) removes the selected rows. Note that in order to select rows the number on the left side
has to be clicked. The context menu also provides several options to handle rows in a table (e.g.
insert row, move row, etc.)

 The IMKER case study

 37

It is also possible to edit some of the attribute values that are visualized in the Modelling area without

using the Notebook. For this simply select the object and then click on the visualized attribute value

(e.g. the name: “Entity (ER)-317265”). Note that this prevents opening the Notebook although the

attribute is being edited.

4. Exporting models
The tool also provides functionality to export the created models in different formats. Some of those will

be described here. Most of them are available in the “Import/Export” component ()

4.1 Creating a graphic from a model
It is possible to create a graphic of the currently opened model and store it in a file using the provided

“Generate graphics” functionality (icon in the Toolbar available when using the “Modelling”

component). This opens a dialog showing the region of the model for which the graphic will be created

as well as options to scale the created picture and to either save it in a file (with different formats

available) or copy it to the clipboard. Clicking on the “Generate” button will finish the process.

The region can be set beforehand by holding down the ALT key and click-and-dragging a box in the

Modelling area with the mouse. This will create a teal rectangle (that can also be resized) showing what

region will be used for generating the graphic. The following picture shows the dialog for the previous

example model, where a fitting region has been set:

4.2 Exporting the exercise
It is also possible to export an entire exercise at once. This can be achieved by using the menu item

“Model → Export Exercises” (or using the icon in the Toolbar). This will show a dialog where the

model group containing all of the solutions for the exercise can be selected. Afterward, a new dialog

asks for a folder where the results should be stored. Once it is finished a message will inform you about

it.

This functionality exports all of the models contained in the selected model group or one of its

descendent sub-groups in ADL format and also create individual graphic files for all of the models. The

creation of the graphic can sometimes fail when the name and/or version contain a character that is not

supported by the operating system as a filename11. IMPORTANT: It also removes empty space from the

right and the bottom in the drawing area (in the Modelling area) AND saves the model before

generating the graphic.

11 Common ones like „:“, „/“, „*“ etc. are replaced by a „-" for the file name.

The IMKER case study

38

4.3 Exporting and importing models
One or several models, as well as model groups, can be exported to/imported from either the ADL

format (proprietary) or XML format by using the according menu items in the “Model” menu (e.g.

“Model → XML export (default)…”).

For the export, a simple dialog is shown where the models and/or model groups are selected at the top.

The middle of the dialog contains some checkboxes to control what should be exported (e.g. “Including

models”, “Including model groups” etc.) and at the bottom, the file is specified where the models/model

groups should be exported to. The export is started by clicking on the “Export” button and at the end, a

success or error message is shown.

For the import, there are several tabs available. In the “File selection” tab the file containing the

models/model groups is selected. The “Model options” tab provides some choices on how to deal with

collisions (e.g. what to do when two models have the same name). The last tab “Log file” allows logging

the process in a file. After everything is selected click on the “OK” button. This will prepare the data

from the previously selected file and open another dialog. Here the left side shows which models and/or

model groups have been found in the file and you can select which of those should be imported. On the

right side select into which model group the contents should be imported and click on the “Import”

button. In the end, a success or error message is shown.

4.4 Exporting models as RDF
A new function in Version 1.1 adds the possibility to export one or several models in RDF Format. This

can be simply accessed through the menu item “Model → RDF Export”. The first dialog asks which

models should be exported. Here either directly the models or entire model groups can be selected.

Afterward, a file selection dialog will ask where the RDF data should be stored and allow a choice of

different formats (.trig is recommended). A third dialog will ask for a base URI to be used in the

identifiers as a prefix. Here it is recommended to use a valid URL without the fragment (for example

http://www.omilab.org/example# or http://www.example.net/#). It is not necessary for the URL to be

actually used (i.e. the URL can return an error code like 404), just that the URL is valid. Once it is finished

a message will inform you about it.

With Version 1.2 additional attributes have been added to (almost) all elements and models to enhance

the RDF Export. These are found in the “RDF properties” tab of the Notebook. The “URI” attribute allows

specifying a specific URI to be used for the element/model instead of automatically generating a URI.

The “Additional Triples” table allows specifying additional triples (Subject, Predicate, and Object) that

will be added to the graph, where one row represents one triple. If a cell is left empty in the “Additional

Triples” table, then it will be substituted with the URI of the element/model it is located in. Note that

the values provided in those attributes will be treated as is as a complete URI (ignoring prefixes etc.).

Therefore, it is necessary to enter the entire URI. Also with Version 1.2 the names of elements and

models are exported explicitly as rdfs:label statements.

http://www.omilab.org/example
http://www.example.net/

 The IMKER case study

 39

5. Additional hints and information

5.1 Specific information for BPMN modelling
The BPMN implementation provides concepts to describe processes, as well as for describing input,

output, and execution of “Tasks”. Two different modes are available, which limit the available concepts.

By default, the “BPMN 2.0” mode is selected, which contains the typical BPMN concepts. However, the

mode can be changed (through the menu “View → Mode”) to “Simulation”. This mode further adds

concepts that are necessary to perform simulation of processes in the tool (e.g. converging gateways as

their own types). The following picture shows the two modes and which types of elements they use:

The majority of BPMN should be straight forward and some constraints are enforced by the tool (e.g.

“Start Events” cannot have any incoming “Subsequent” relations). However, due to certain platform

restrictions, the Gateways (Exclusive, Inclusive, Parallel, etc.) are handled a bit differently12. In the

standard BPMN mode, the Exclusive Gateway is available as its own type (“Exclusive Gateway”),

however, the Inclusive and Parallel Gateway are modelled through the “Non-exclusive Gateway”. The

type (Inclusive, Parallel, or Complex) is then set through the attribute “Gateway type” (in the

Notebook)13.

Previously the Intermediate event was split into two different types: “Intermediate Event (boundary)”

and “Intermediate Event (sequence)”. Since Version 1.1 the two have been merged into one and are

distinguished through setting the “Attached to” Attribute. If the attribute has a value it will be

considered on the Boundary of the set “Task”. A new Mode has been added called “Deprecated”, which

allows the use of the two old Intermediate events in order to not destroy previously created models.

Those events can easily be transformed into the new “Intermediate Event” by right-clicking on them and

selecting “Convert → Intermediate Event (BPMN)”.

12 This is due to the way simulation is handled by the platform.
13 “Simulation” mode additionally has a “Non-exclusive Gateway (converging)”, which is necessary for the
simulation.

The IMKER case study

40

Certain types of objects can be converted into other types (e.g. “Exclusive Gateway” to “Non-exclusive

Gateway”) by selecting them and then using “Conversion” in the context menu. An object will become

greyed out and cannot be selected, if it is converted to a type that is not available in the current mode.

To transform it back (or delete it or change it etc.), simply change the mode to one that makes use of

the type (e.g. “All modelling objects”). The picture below shows the available options for converting the

“Exclusive Gateway”:

The availability of some attributes (in the Notebook) is dependent on the values of others. This is to

prevent setting wrong values or changing irrelevant attributes. For example, the available “Triggers” of a

“Start Event” depend on its “Type” to prevent wrong selections. Another example is the “Loop condition

(standard)” attribute of a “Task”, which is only available when the “Loop type” is set to “Standard”

(otherwise it is irrelevant).

The relation “Subsequent” has an attribute “Visualized values”, which controls which attribute values

are shown. Should the desired value not be shown on the drawing area (e.g. “Transition condition”)

then it might be because of the “Visualized values” attribute. “Subsequent” is also used in several

different model types (e.g. EPC, UML Activity Diagram). Therefore it also contains attributes used in

those model types. They are however grouped in their own categories (e.g. “UML properties”).

For many different types of objects (e.g. “Start Event”, “Exclusive Gateway” etc.) the visualization of the

name can be controlled through the attribute “Show name”. In some cases, this is a simple choice if the

name should be displayed (e.g. “Start Event”). In other cases, more options are available (e.g. “Exclusive

Gateway”).

Version 1.2 also added the option to further describe Service Tasks through Petri Nets or Flowcharts

using the “Automated service details” attribute. The attribute should reference the starting point in the

Petri Net or Flowchart.

The following picture provides some detailed information about the implementation of BPMN in Bee-

Up. More specifically it shows an excerpt of how the BPMN meta-model is implemented. Certain parts

are provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for

process simulation. The “…” abstract class is used to represent complex generalization structures in the

meta-model in a simplified manner.

 The IMKER case study

 41

5.2 Specific information for EPC modelling
The EPC implementation provides the core concepts from Event-driven Process Chains to describe

processes (“Event”, “Function”, logical operators), as well as some additional ones for describing input,

output, and execution of “Functions”. Different modes can be selected, which limits the available

concepts. By default, the “EPC” mode is selected, which contains “Events”, “Functions” and the basic

logical operators from EPC (also some additional “general” concepts). However, the mode can be

changed (through the menu “View → Mode”) to “eEPC” or “Simulation”. “eEPC” (extended EPC)

additionally contains “Organizational units”, “Information objects” and relations for those new objects

types. The relations for denoting inputs and outputs for “Functions” are implemented as separate types.

“Simulation” mode further adds concepts that are necessary to perform simulation of processes in the

tool (e.g. “Start Event” which explicitly denotes the start of the process). The following picture shows

the three modes and which types of elements they use:

The IMKER case study

42

The majority of EPC should be straight forward and some of the constraints of an EPC model are

enforced by the tool (e.g. between two “Functions” there has to be an “Event”). However, due to certain

platform restrictions, the typical logical operators (XOR, OR, AND) are handled a bit differently14. In the

basic “EPC” and “eEPC” the XOR operator is available as its own type (“XOR operator”), however, the

AND and OR operators are modelled through the “Parallel fork”. The type (AND or OR) is then set

through the attribute “Type” (in the Notebook)15. In “EPC” and “eEPC” mode the “Parallel fork” is used

both for splitting and merging paths.

The relation “Subsequent” has an attribute “Visualized values”, which controls which attribute values

are shown. Should the desired value not be shown on the drawing area (e.g. “Transition condition”)

then it might be because of the “Visualized values” attribute. “Subsequent” is also used in several

different model types (e.g. BPMN, UML Activity Diagram). Therefore it also contains attributes used in

those model types. They are however grouped in their own categories (e.g. “UML properties”).

Certain types of objects can be converted into other types (e.g. “Event” to “Start Event” or “End Event”,

“XOR operator” to “Parallel fork” etc.) by selecting them and then using “Conversion” in the context

menu. An object will become greyed out and cannot be selected if it is converted to a type that is not

available in the current mode. To transform it back (or delete it or change it etc.), simply change the

mode to one that makes use of the type (e.g. “All modelling objects”). The picture below shows the

available options for converting the “XOR operator”:

Version 1.2 also added the option to further describe Functions through Petri Nets or Flowcharts using

the “Automation details” attribute. The attribute should reference the starting point in the Petri Net or

Flowchart.

The following picture provides some detailed information about the implementation of EPC in Bee-Up.

More specifically it shows an excerpt of how the EPC meta-model is implemented. Certain parts are

provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for

process simulation. The “…” abstract class is used to represent complex generalization structures in the

meta-model in a simplified manner.

14 This is due to the way simulation is handled by the platform.
15 “Simulation” mode additionally has a “Parallel merge”. This distinction between fork and merge is necessary for
the simulation algorithm.

 The IMKER case study

 43

5.3 Specific information for ER modelling
The ER Model implementation provides the general concepts used (“Entity”, “Relation” and “Attribute”)

as well as the necessary connectors16 (“Links” and “has Attribute”) among other common elements

(“Note”, “has Note” etc.). Restrictions are set for the “Links” connectors to prevent creating wrong

models. A “Links” connector has to start from either a “Relation” or a “Relation Node” and target an

“Entity”, a “Relation” or a “Relation Node”. So it is necessary to click first on a “Relation” or a “Relation

Node” when creating a “Links” connector. Cardinalities for the relation are also set on the “Links”

connector. Note that for Chen-Notation the “m” is used for anything else than 1, meaning it should be

used to represent Cardinalities like “m”, “n”, “o” etc. Think of “m” not as a specific number, but as

“many”. What notation is visualized in the model can be set through the model attribute “Used Notation

(ER)” found in the “ER properties” tab.

The finer details are controlled through the attributes found in the notebook, which in some cases also

influence the visualization (notation) of the objects. For example to show a “Weak Entity” use a normal

“Entity” and check its “Weak entity” attribute in the Notebook. Also to specify the “Relation” that

indicates on which stronger entity it relies use a “Relation” and set its “Relation type” attribute to

“Weak entity dependency”.

Should a “Relation” be between the same “Entity” (e.g. Person knows Person) then use the “Relation

Node” on one of the connections. For a binary relation (e.g. Person knows Person): First connect the

“Relation” to the “Entity” directly, then connect the “Relation” to a “Relation Node” and then connect

the “Relation Node” to the “Entity”. This is necessary because of how identifiers of connectors work

(identified by their type, their source object, and their target object). An example can be seen below:

16 In this one section we refer to the lines as “connectors” instead of “relations” to not confuse them with the
objects of type “Relation”

The IMKER case study

44

Functionality for creating SQL statements from an ER Model is also provided. It can be accessed through

the “Model” menu of the “Import/Export” component. A description with the quirks and details can also

be found in the same menu. The functionality uses the currently active model and will ask for a file to

store the created SQL code in. If the selection of a file is canceled it will instead show the SQL code in a

pop-up window from where it can be copied to the clipboard. Version 1.2 added two SQL properties to

“Attribute”: 1) one for directly entering the data type of the attribute and 2) to specify auto-increment

(only works for MySQL). Version 1.3 changed how to handle inheritance through “IS-A” relations. Two

options are available as Model attribute “IS-A Behaviour”: 1) the “old” style where the table is copied

and 2) [now default] which handles inheritance similar to Weak Entities.

The following picture provides some detailed information about the implementation of ER in Bee-Up.

More specifically it shows an excerpt of how the ER meta-model is implemented. Certain parts are

provided by the platform to allow specific functionality, like __D_container__ used to automatically

derive “Is Inside” relations.

 The IMKER case study

 45

5.4 Specific information for UML modelling
UML and its implementation in the tool are big. Addressing all of the peculiarities would be difficult and

also a lot of text to read. Therefore, they are addressed in general and some examples are provided.

Notations17 are generally influenced by the attribute values that are specified for them (in the
notebook):

• Most of the attributes that deal only with the visualization are located in a category called
“Presentation”. Examples of such attributes are “Color” (of the object background),
“Representation” (of text), and “Presentation” (of class details).

• The “Subsequent” relation and the “Activity edge” use the attribute “Visualized values” to
control which attribute values should be shown (e.g. Denomination, Transition condition,
Weighting, etc.).

• Relations often have an option on where the text should be shown, handled through a
“Representation” attribute. In general “above/below” value should be used for parts of relations
going horizontally and the “left/right” value for parts of relations going vertically. As an
example, the “Association” used in “Class / Object Diagrams” can have text in three parts: at the
start, at the middle, and at the end. For the start and the end, a different “Representation”
value can be set. If for example the association class starts going from the object towards the
right (horizontal) and then turns towards the bottom (vertical) then the “Representation start”
should use “above/below”, the “Representation end” should use “left/right”. In most cases, the
middle part uses a notation that works well with both horizontally and vertically drawn
relations.

• UML Specific attributes (e.g. “IsAbstract”, “Visibility” etc.) are usually located in a category
called “UML properties”. In some cases, they are located in the “Description” category (e.g. the
“Type” of a “Final Node”) for quicker access or have their own category (e.g.
“Properties/Operations” of a “Class”). Some of them also influence the notation, like the “Final
type” attribute of a “Final Node” in an “Activity Diagram” or the “Properties” entered in a
“Class”.

Certain relations, like the “Message” from a “Sequence Diagram”, have their sub-types controlled

mostly through the attributes. So the typical types like “synchronous call”, “asynchronous call” and

“reply” are handled through the “Message sort” attribute of the “Message” relation.

In order to draw several relations between the same two objects in the same direction (e.g. several

“Associations” between the same two “Classes”) the “Relation Node” has to be used. For every

additional relation beyond the first one, it is necessary to create two relations: one has to go from the

source object to a “Relation Node” and the other from that “Relation Node” to the target object. This is

necessary because of how identifiers of relations work18. For example when there are the classes

“Employee” and “Department” and two associations “works for” and “manager of” between the two

classes. The “manager of” association can go directly from “Employee” to “Department”. However, the

“works for” association has to be split in two: one association going from “Employee” to a “Relation

Node” and another from the same “Relation Node” to the “Department”. The attributes should also be

split among those two relations accordingly (i.e. the multiplicity for the “Employee” side of “works for”

has to go to the first relation, the multiplicity for the “Department” side of “works for” has to be in the

second relation and the name can be in one of those). The example can be seen below:

17 The look of an object on screen or on paper.
18 A relation is identified by its type, its source object and its target object. Duplicate identifiers are not allowed.

The IMKER case study

46

There are also cases where the source and the target of a relation should be the same object (e.g. an

“Association” from a “Class” to the same “Class” or a “Transition” from a “State” to the same “State”).

This also requires a “Relation Node”, since the same object cannot be the source and the target of one

relation. For this case simply make relation from the object to the “Relation Node” and then from the

“Relation Node” to the same object. For example when a relation “knows” should be from and to the

class “Employee” first create the “Relation Node”, then make an “Association” from “Employee” to the

“Relation Node” and then from the “Relation Node” back to the “Employee”. The example can be seen

below:

In UML it is also sometimes necessary to have a relation that originates or targets another relation.

Again this is solved by using the “Relation Node”. Simply put the “Relation Node” on the relation that

should be the source or the target (this will split the relation in two) and use the “Relation Node” as the

source or target of the other relation. For example when the association “works for”, between

“Employee” and “Department” should be linked to a class “works for” to indicate it is an association-

class (so it can contain attributes like “working hours”): first put the “Relation Node” on the “works for”

association and then make the “is Associationclass” relation from that “Relation Node” to the desired

“works for” class. The example can be seen below:

The boundary of “Lifelines” should not overlap, due to the automatic assignment of “Execution

Specifications” based on being inside of a “Lifeline”. The exact boundary of an object is visible when the

element is selected and is represented by the thick-checkered line as seen in the picture below:

To create a “Composite State” (i.e. a “State” that contains other states) use the “State” type and set the

attribute “Number of regions” to a value larger than 0, depending on how many regions are available. A

simple example of a “Composite State” with only one region can be seen below:

 The IMKER case study

 47

In a UML Use Case Diagram it is possible to add constraints to “Extend” relations using two approaches:

1. Use the “Condition” and “Points of extension” attributes of the “Extend” relation.

2. Create a “Constraint” object, place a “Relation Node” in the middle of the “Extend” relation and

then connect the “Constraint” to the “Relation Node” through the “has Constraint” relation.

In “Sequence Diagrams” it is sometimes necessary to show a time delay by drawing “Message” relations

diagonally. This is generally achieved by adding bend points to a relation. However, adding bend points

can be difficult since the tool tries to draw horizontal (and vertical) relations. Therefore the “Message”

relation contains an attribute called “Time delay”. Putting a checkmark in this attribute will

automatically add two bend points to the relation. Those can then be moved and other bend points can

also be added more easily. Removing the checkmark will also remove the bend points again. The two

pictures below show a “Message” relation with the two possible states of the “Time delay”:

It is possible to leave notes and comments in the models by using the “Note” class and also assigning

those notes to any object using the “has Note” relation. The text displayed is specified through the

“Description” attribute of the “Note”. An example can be seen below:

The following picture provides some detailed information about the implementation of UML in Bee-Up.

More specifically it shows an excerpt of how the UML meta-model is implemented. Certain parts are

provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for

process simulation (e.g. of Activity Diagrams). The “…” abstract class is used to represent complex

generalization structures in the meta-model in a simplified manner.

The IMKER case study

48

5.5 Specific information for PN modelling
The Petri Net implementation provides the base concepts (“Place”, “Transition” and a connector called

“Arc”) as well as some additional ones for simulation and state storage. Tokens are modelled through

the “Tokens” attribute of “Place” and are also visualized in them through small black circles and a

number if there isn’t enough room to draw all tokens. “Transitions” are also categorized into “Hot”

(drawn in red color) and “Cold” (drawn in blue color with a black “epsilon” looking character) transitions

which is handled through the “Type” attribute. “Arcs” contain one attribute called “Weight” which is

used to denote how many tokens should be consumed/created by the attached “Transition”. The

picture below shows the different notations of a Transition:

When the conditions to fire a transition are met (i.e. enough tokens in all preceding places and enough

capacity in all succeeding places) then a “Fire” button will appear on the transition (see picture above).

Clicking on this button will fire the transition, meaning that the necessary tokens will be consumed in

preceding “Places” and new ones will be added to the succeeding “Places”. In Version 1.1 the “Arcs”

have been extended with additional “Ready behavior” for their following transitions, which allows firing

a transition only when certain conditions are met without consuming any tokens. For more information

check the “Ready behavior” attribute information of an “Arc”.

 The IMKER case study

 49

To simulate the net a special concept called “Simulation Configurator” is used (see picture above). It

contains the configuration for a simulation run and is also used to start the simulation. The configuration

is handled through the attributes of the notebook. See the additional information available for each

attribute to find out more. The simulation can be started either by using the buttons on the drawing

area or the buttons in the notebook. Through them, either one iteration, multiple iterations, or a slow

simulation with delays between each iteration can be run. One iteration tries to fire all ready

“Transitions”. Should there not be enough tokens to fire all ready “Transitions” (e.g. several transitions

requiring a token from a “Place” that only has one) then the selected “Transition conflict strategy” will

be employed.

It is also possible to store the current state of a Petri Net and later restore it using “State Storage” (see

picture below). In this context, the state of the whole net is considered to be the number of tokens in all

the known places. When a “State Storage” is first added to the model it will store the state at that time

in its attribute “Storage”. This stored state can also be manipulated manually through that attribute. The

notebook also provides two buttons: one to store the current state of the model (i.e. update the “State

Storage” object with new values) and one to restore the state based on the “State Storage”.

Version 1.1 also added two Model attributes: “Visualize priorities” and “Visualize probabilities”.

Selecting them changes the notations of transitions. “Visualize priorities” shows their relative priority in

the model with a green bar on the left. “Visualize probabilities” shows a yellow bar on the right of cold

“Transitions”. Version 1.3 added another Model attribute: “Visualize fire button” which, when selected,

will hide the “Fire” buttons in the Petri Net. It also added a “Capacity” attribute to the “Places”.

The picture below provides some detailed information about the implementation of PN in Bee-Up. More

specifically it shows an excerpt of how the PN meta-model is implemented. Certain parts are provided

by the platform to allow specific functionality, like __D_container__ used to automatically derive “Is

Inside” relations.

The IMKER case study

50

5.6 General information for modelling

• Don’t forget to save (so you are safe from data loss).

• Context menus are available for many things (e.g. objects in the Modelling area, entries of the
Explorer window, etc.). Making use of them can make work easier.

• Should a window be gone/missing (e.g. Explorer window, Modelling window, etc.) → They can be
toggled on and off through the menu “Window → Tools”

• Most icons have a tool tip, which provides a hint on what an icon is about. In the case of the icons
of the Modelling window, the tool tip shows the name of the type (e.g. Entity, Relation, has
Attribute, etc.).

• The tool also provides some functions for convenience. They can be accessed through the Toolbar

using the icons. From left to right they toggle the functionalities:
o Align objects on the grid. The grid can be configured through the menu “View → Grid →

Settings…”
o Show the grid.
o Use the modelling assistant. It supports the creation of new objects and relations from an

existing object.
o Automatically add bend points to relations when creating them to use right angles.

• Notations can contain hyperlinks to other models/objects if the proper attributes are set. For
example, if a “Class” has the “Referenced class” attribute set, then the visualized name will be
based on the referenced class and also a hyperlink to that class.

• The size of the Drawing area is represented by the white rectangle with the grey border in the
Modelling area and can be resized similar to a window. Note that it is automatically extended as
needed to fit any new objects that are created or old elements when their position is changed.

• Some model types (e.g. EPC, BPMN) have different modes. Those control which types of objects are
available and visualized in the Modelling area. They can be changed through the menu “View →
Mode”

• Object access locks can be changed through the menu item “View → Object access locks…”

• The tool has certain restrictions due to the things it uses as identifiers and also some limitations:
o Models are identified through their type and a combination of their name and version (“[name]

[version]”). Therefore two ER models, one with the name “Exercise” and version “3” and the
other with the name “Exercise 3” are not allowed.

o Objects in a model are identified through their type and their name. Therefore no two objects
of the same type in the same model can have the same name. Because of that, the “Attribute”
in ER models uses “Denomination”.

o Relations in a model are identified by their type, their source object, and their target object.
Therefore two relations of the same type linking the same objects in the same direction in the
same model cannot exist.

o The source and the target of a relation cannot be the same object.
o Relations cannot be the source or the target of other relations.

• To work around the limitations of relations the object type “Relation Node” (a small grey circle) is
available in all model types:
o It can be used to create multiple relations of the same type between the same two objects (e.g.

several “Message flows” between two “Pools” in a BPMN model) by linking the first object to
the “Relation Node” and then the “Relation Node” to the second object (this has to be done for
each relation of the same type, between the same two objects, beyond the first direct relation).

o It can be used to draw relations with the same source and target, by going through the “Relation
Node” instead (e.g. when a “Class” is associated with itself). Place the “Relation Node”, then
draw the relation from the object to the “Relation Node” and then from the “Relation Node”
back to the object. Kindly add bend points to the created relations to increase the readability.

o It allows the use of relations as the source or target of another relation by using the “Relation
Node” instead. Freely place the “Relation Node” on an existing relation (e.g. association

 The IMKER case study

 51

between two “Classes” in UML) and create the new relation (e.g. “is Associationclass”) from/to
this “Relation Node” to/from the desired Object (e.g. the third “Class”).

6. Change History

6.1 Changes in Version 1.3

• In BPMN and EPC: Added possibility to further describe the decisions made in tasks/functions
through elements based on DMN Version 1.1.

- (BPMN) Tasks and (EPC) Functions can reference a (DMN) Decision through their “Make decision”
attribute.

- (BPMN) Data Objects and (BPMN) Data Associations can be used to further detail where and how
(DMN) Input Data is set.

• In BPMN and EPC: Made the notation of relations more distinguishable from one another.

• In PN: Improved and extended the execution and simulation capabilities:
- The Delayed Simulation is now more responsive (Cancelling is now quicker), works with tenths of

a second (it can be faster than 1 second now), and also highlights the fired transitions (to better
see the fired transitions: switch to "Grayscale mode").

- The created simulation log has changed. Instead of only containing the places and the number of
tokens, it now also contains the transitions and whether they have been fired or not. For details
check the information text of the “Show log” attribute.

- A new style for firing transitions was added through the "Automated Transition Firing" element.
See its information text for more details.

- Added an “Effect” attribute to transitions and an “Allow effects” model attribute. “Allow effects”
activates the “Effect” attribute, which can then be used to specify AdoScript code, which is
executed when the transition is fired (after removing tokens, before creating tokens).

- Places can now have a maximum capacity for tokens specified.
- The transition’s "Fire" buttons can be hidden using the model attribute "Visualize fire button".

• In ER: The Create SQL statements functionality now has two options for handling inheritance 1) the
old style where the table is copied and 2) [now default] which handles inheritance similar to Weak
Entities. They can be switched through the model attribute "IS-A Behaviour".

• Added an option to show models using mostly only black, white and gray for all model types except
UML. This can be enabled for each model through a new model attribute "Grayscale mode".

• Added functionality that executes Flowcharts. The provided code in Flowcharts (Operation
code/Check expression) can use AdoScript as well as some additionally provided keywords. See the
information text for "Execute flowchart from Start" in a Start Terminal for more details.

• Added Functions for AdoScript which provide a random value based on different types of
distributions. Those are:

- randomStandardUniformDist() --> a random value from a uniform distribution between
(including) 0.0 and (excluding) 1.0, so it is very close to the Standard Uniform Distribution.

- randomUniformDist(lower_limit, upper_limit) --> a random value from a uniform distribution
between (including) the lower limit and (excluding) the upper limit.

- randomStandardNormalDist() --> a random value from a standard normal distribution (i.e.
expectancy-value = 0, standard deviation = 1) based on Box-Muller transformation using a natural
logarithm.

- randomNormalDist(expectancy_value, standard_deviation) --> a random value from a normal
distribution with a specific expectancy and standard deviation based on Box-Muller
transformation using a natural logarithm.

- randomTriangularDist(lower_limit, mode, upper_limit) --> a random value from a triangular
distribution based on inverse CDF from "Beyond Beta - Other Continuous Families of Distributions
with Bounded Support and Applications". The triangle is built from lower_limit to upper_limit
with its peak at mode.

- randomExponentialDist(inverse_scale) --> a random value from an exponential distribution based
on inverse CDF using the inverse scale provided (lambda).

The IMKER case study

52

- randomDiscreteDistPositions(probabilities) --> a random value from a discrete set of probabilities.
The probabilities have to be an array and the returned value is a position index (0 to (LEN
probabilities)-1) from the array. The sum of all probabilities should be 1.0.

- randomDiscreteDistValues(value_probabilities) --> a random value from a discrete set of values
and their corresponding probabilities. The value_probabilities have to be a map (key-value pairs),
where the keys are the possible values (either strings or numbers) and their values should be their
probability. The sum of all probabilities should be 1.0.

- randomDiscreteUniformDist(lower_limit, upper_limit) --> a random value from a discrete uniform
distribution of integers between (including) the lower limit and (excluding) the upper limit.

- randomBernoulliDist(probability) --> either 1 or 0 based on the Bernoulli distribution, with the
parameter indicating the probability of the value 1. A probability of 0.5 can be considered a coin
toss.

- randomRademacherDist() --> either 1 or -1 based on the Rademacher distribution, where the
probabilities of both cases are 50%.

- randomCoinToss() --> either 1 or 0 based on a fair coin, with 50/50 chance. So same as
randomRademacherDist, only with other outcomes.

• The automatic change of model names by adding the model group name at their beginning has
been removed since it has led to problems when importing models.

• Additional minor improvements and bug fixes.

6.2 Major changes in Version 1.2

• In BPMN and EPC: Added possibility to describe automated tasks (BPMN Service tasks, EPC
functions) through Petri Nets or Flowcharts.

• In ER: Added two properties "Data type (direct)" and "Autoincrement" for ER attributes, providing
more options to the generation of SQL-Create statements.

• Added additional attributes to elements for enhancing the RDF-Export (e.g. specify element URI,
provide additional triples, meaningful references between models/model elements).

6.3 Major changes in Version 1.1

• In BPMN: Merged "Intermediate Event (boundary)" and "Intermediate Event (sequence)" into
"Intermediate Event". The old classes are still available and can be converted to allow model
compatibility to Version 1.0

• In PN: Allowed two special conditions on Arcs that control the firing of the transition without
consuming tokens.

• In PN: Added two model attributes "Visualize priorities" and "Visualize probabilities" to turn on and
off the visualization of those transition attributes in the model.

• Added RDF Export functionality for all models.

7. Development Team
The Bee-Up modelling tool has been realized by Patrik Burzynski (patrik.burzynski@omilab.org), Chief

Developer. The OMiLAB Team and Bee-Up Community extend their thanks to Mr. Burzynski.

8. Additional used Tools
The following additional tools, implementations, binary codes, etc. are used/included in Bee-Up and

their according licenses apply:

• Apache Jena 3.1.0 – is used by the RDF Export functionality. Apache Jena website is available
here: http://jena.apache.org/

• JDOM 2.0.6 – Developed by the JDOM Project (http://www.jdom.org/), it is used in the RDF
Export functionality.

mailto:patrik.burzynski@omilab.org
http://jena.apache.org/
http://www.jdom.org/

NEMO Summer School Series

BECOME A DIGITAL LEADER

Apply NOW for the next edition:

New Publication:

books.omilab.org

Selected OMiLAB Publications:

• Domain-Specific Conceptual Modeling. Concepts, Methods
and Tools. Karagiannis et al.
DOI: 10.1007/978-3-319-39417-6

• A Digital Innovation Environment powered by Open Models
Laboratory. The OMiLAB Team.
DOI: 10.5281/zenodo.3899990

• NEMO Summer School Series Brochure. The OMiLAB Team.
DOI: 10.5281/zenodo.3946677

• OMiLAB: A Smart Innovation Environment for Digital
Engineers. Karagiannis et al.
DOI: 10.1007/978-3-030-62412-5_23

• The i* Method: Conceptualization Concept & Implementation
Procedure for ADOxx. Schwab, M. E.
ISBN: 978-3-902826-01-5

• Developing Conceptual Modeling Tools Using a DSL. Visic,
N., Karagiannis, D.
DOI: 10.1007/978-3-319-12096-6_15

https://nemo.omilab.org

The NEMO summer schools focus on the design and implementation of Enterprise Digital Twins and

Ecosystems based on conceptual modelling methods. They enable the design of semantically rich

diagrammatic models that are both human-understandable and machine-processable, while providing

services for analyzing models and interoperating with open digital environments. Conceptual models can

thus be used as the knowledge platform of an organization and their value can be co-created by flexible

collaboration between digital engineers and stakeholders.

Working in and for digitized organizations where smart devices, digital artefacts, robots, data streams and

connectivity are ubiquitous, you will be faced with challenges pertaining to human resources, process

lifecycles, business or regulatory rules. NEMO provides a vertical overview across different application

domains to prepare you for all dimensions of digitization.

The summer school takes place at the premises of the University of Vienna, Faculty of Computer Science

and offers a two-week program combining lectures and practical work in multicultural groups based on

six topical pillars.

https://www.omilab.org/activities/books/
https://nemo.omilab.org/

Free Bee-Up Download at

https://bee-up.omilab.org

Visit OMiLAB: www.omilab.org

Contact

Iulia Vaidian

info@omilab.org

Social Media

