
www.omilab.org

GraphRep

www.omilab.org

2

Overview & Goals

1. Application Scenario Notation
2. Modeling Language Notation Specification in ADOxx
3. Exercise Application: Notation for ‘Heliport’
4. Lessons Learned

www.omilab.org

3

Overview & Goals

1. Application Scenario Notation
2. Modeling Language Notation Specification in ADOxx
3. Exercise Application: Notation for ‘Heliport’
4. Lessons Learned

www.omilab.org

4

Reference: Karagiannis, D., Kühn, H.: „Metamodelling Platforms“. In Bauknecht, K., Min Tjoa, A., Quirchmayer, G. (Eds.):
Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 2002,
LNCS 2455, Springer, Berlin/Heidelberg, p. 182 ff.

Generic Modeling Method Framework

www.omilab.org

5

1. Application Scenario: Modeling Language Notation for Smart Cities
Requirements for Specificity in Notation

How to capture aspects of Smart Cities in standard
modeling languages?

Source: http://www.districtoffuture.eu/uploads/imagenes/imagenes_meetinpoint_smart-city_2b637ab6.jpg

Class

Use Case

www.omilab.org

6

 Static Notation:
− Semiotic Clarity
− Perceptual Discriminability
− Semantic Transparency
− Complexity Management
− Cognitive Integration
− Visual Expressiveness
− Dual Coding
− Graphic Economy
− Cognitive Fitness
 Dynamic Notation:
− Notation changes (e.g. attribute change)

2. Modeling Language Notation Specification in ADOxx

Moody (2009) The Physics of Notation, IEEE
Transactions on Software Engineering Vol. 35 No. 6.
http://doi.ieeecomputersociety.org/cms/Computer.or
g/dl/trans/ts/2009/06/figures/tts20090607567.gif

Eight visual variables that can be used to
graphically encode information

www.omilab.org

7

1. Application Scenario: Modeling Language Notation for Smart Cities
Requirements for Specificity in Notation

 What are the Smart City aspects we are interested in?
 How can we map these aspects to modeling classes,

relation classes, and attributes?
 What is a proper visualization of the relevant aspects?

Requirements for new modeling concepts:

 Streets

 Crossings

 Cars

 Buildings

 Traffic Lights and Traffic Signs

 Green areas

www.omilab.org

8

Overview & Goals

1. Application Scenario Notation
2. Modeling Language Notation Specification in ADOxx
3. Exercise Application: Notation for ‘Heliport’
4. Lessons Learned

www.omilab.org

9

Meta Model of Meta Modeling Language

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from- class

is to- class

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..*
0..*

1..1
1..1

has
1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Facette

Wertebereich

ModelltypSicht

...

regular
expression

...

Attributtyp

Atomarer Typ
1..*0..*

Attribut

Metamodell-
ausschnitt

0..*

1..1

1..*

-

1..1

1..1

0..*
0..*

0..*

0..*
0..*

1..1
1..1

has

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltypeview design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type
0..*

attribute

metamodel
part

0..*

1..1

www.omilab.org

10

2. Modeling Language Notation Specification in ADOxx

 Photoshop and Paint etc. allow you to create vector as
well as pixel graphics

 With standards like e.g. SVG you can
“programmatically” create pictures

Why is GraphRep necessary?
 GraphRep allows to change the notation (=visual

appearance) depending on the objects state e.g.
attributes of object (this is called dynamic notation)

 A static notation is a notation that remains the same
independently of the objects state (this is called static
notation)

www.omilab.org

11

2. Modeling Language Notation Specification in ADOxx

 The graphical visualization of modeling classes and relation classes in
ADOxx is realized by a special kind of class attribute
− GraphRep (inherited from a generic super class)

 Meta modelers can edit it’s value to realize a
specialized visualization

 The ‘GraphRep’ attribute value must follow a
specific syntax in order for the platform to parse
and draw the graphics
− Supporting basic geometrical objects

(rectangles, circles, lines…)
− Compositions of basic geometrical objects

(Compounds ..)
− Integration of graphics files into the

visualization (Icons ..)
 It is interpreted like a procedural program,

drawing the shapes in the specified order.

www.omilab.org

12

2. Modeling Language Notation Specification in ADOxx
> GraphRep Elements

 Graph Elements

 GRAPHREP

− The GraphRep definition must start with command GRAPHREP to be valid.

− Syntax Descripzion: https://www.adoxx.org/live/adoxx-notation-language-graphrep

https://www.adoxx.org/live/adoxx-notation-language-graphrep

www.omilab.org

13

2. Modeling Language Notation Specification in ADOxx
> GraphRep Basics
 Class attribute GRAPHREP is of type long string, hence the attribute value is a text that

is interpreted as a script by the GRAPHREP interpreter.
 The following types of elements are distinguished:

 The representation characteristic for following shape elements is modified by style
elements:
− PEN sets the characteristics of the outline pen for shape elements.
− FILL sets the characteristics of the fill-in brush for shape elements.
− SHADOW switches the additional shadow of shape elements on or off
− FONT sets the font for displayed texts and attribute values.

Style
elements

Shape
elements

Variable
assigning
elements

Context
elements

Control
elements

www.omilab.org

15

2. Modeling Language Notation Specification in ADOxx
> GraphRep Basics
 PEN determines in which manner the lines and curves are drawn, i.e. how strong, in

which color and in which style (e.g. dashed line, solid line ..).

− For shape elements which can be filled, only the outline of the shape is influenced by
the current pen.

− The filling of shapes is controlled by the current fill-in brush, which can be set with FILL.

 Shape elements which can not be filled are POINT, LINE, POLYLINE, ARC and CURVE.

 Fillable elements are RECTANGLE, POLYGON, ELLIPSE, PIE and COMPOUND.

 For shape elements coordinates (positions) have to be specified. Coordinates here are
relative to the position of the particular object, i.e. they are added to the object's position.

Style elements Shape elements Variable
assigning
elements

Context
elements

Control elements

www.omilab.org

16

2. Modeling Language Notation Specification in ADOxx
> GraphRep Commands
 POINT

− Draws a point.
 LINE / POLYLINE

− Draws a single line (LINE) or several lines (POLYLINE).

 CURVE / ARC

− Draws a curve according to a mathematical function or an arc.
 POLYGON

− Draws a polygon consisting of several straight lines where each corner is defined
as a single point.

 RECTANGLE / ROUNDRECT / ELLIPSE / PIE

− A rectangle, rectangle with rounded edges, an ellipse or a segment of an ellipse.
 COMPOUND

− A composite filled Form (from LINE, POLYLINE und CURVE-Elements).

www.omilab.org

17

Static Notation Example
GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
RECTANGLE w:3cm h:1cm

shape

representation
characteristic

GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:1cm y1:2cm
x2:4cm y2:3cm x3:2cm
y3:4cm shape

representation
characteristic

Style elements Shape elements Variable
assigning
elements

Context
elements

Control
elements

www.omilab.org

18

2. Modeling Language Notation Specification in
ADOxx > GraphRep Coordinates
 A coordinate plane is used to provide an exact positioning of the

GraphRep elements. It is composed of:

− The null coordinate is in the middle

− Positive values go to the right and down

− Negative values go to the left and up

Hint:
 It is required to specify the Unit (cm or pt). Units in pixels

are not possible.
 The direction of rotation progresses counter-clockwise!

ELLIPSE x:0.5cm y:0cm rx:2.5cm ry:2cm

0°

90°

180°

270°

www.omilab.org

19

Examples
GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:2cm y1:2cm
x2:4cm y2:3cm
x3:2cm y3:4cm

GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:4cm y1:2cm
x2:4cm y2:3cm
x3:2cm y3:4cm

www.omilab.org

20

2. Modeling Language Notation Specification in ADOxx
> GraphRep for Relation Classes

 Context elements just exist for relations. They specify whether the
starting, the middle or the endpoint of the relation is being defined.
Keyword "START" defines that the following description refers to the
start point of the relation until the next context element
START/MIDDLE/END is specified. A fourth context element (EDGE)
triggers the drawing of a relation's edge. This is the line from the
starting point via possible bendpoints to the end point of a relation.

 For relations the starting, the middle and the end (point) can be defined.
Positions then refer to one of these three points. However, the
coordinate system is rotated depending on the direction of the relation
instance. On defining a relation's GraphRep, you have to regard the
relation as going horizontally from the left to the right. The coordinate
system's origin then is the point of the relation for which the graphical
representation currently is being defined, i.e. start, middle or end point.

Style elements Shape elements Variable
assigning
elements

Context
elements

Control
elements

www.omilab.org

21

2. Modeling Language Notation Specification in ADOxx
> GraphRep for Relation Classes I

 The same commands from normal classes can be used for relation
classes as well. In addition the following keywords are available:

 EDGE
− Defines the representation of the relation edge (line). This

command also "draws the line", allowing to put it in front or
behind other things.

 START / MIDDLE / END
− This command defines the representation of the important edge

parts. If MIDDLE is defined, then the middle of the edge can be
moved in the model.

START END

EDGE

no MIDDLE defined

www.omilab.org

22

2. Modeling Language Notation Specification in ADOxx
> GraphRep for Relation Classes II

GRAPHREP rounded:0.05cm
SHADOW off
PEN color:red w:0.02cm color:$727272

EDGE

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRAPHREP OF EDGE

GRAPHREP END

Applies to both

www.omilab.org

23

2. Modeling Language Notation Specification in ADOxx
> GraphRep for Relation Classes III

GRAPHREP rounded:0.05cm
SHADOW mode:off
PEN color:red w:0.02cm color:$727272 style:dash

EDGE

START
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRAPHREP OF EDGE

GRAPHREP END

GRAPHREP START

www.omilab.org

24

2. Modeling Language Notation Specification in ADOxx
> GraphRep Commands

 ATTR
− Shows an attribute value on the drawing area (e.g. object name).

 TEXT
− Allows to show a specific text on the drawing area (Letters, Symbols …).

 BITMAP
− Allows to embed a picture.

 TABLE
− Creates a table for structuring the attribute representation of an object.

 HOTSPOT
− Allows to access some attributes special function on the drawing area,

e.g. follow an InterRef or execute a Programcall.

Style elements Shape elements Variable
assigning
elements

Context
elements

Control
elements

www.omilab.org

25

Example
GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:1cm y1:2cm
x2:4cm y2:3cm
x3:2cm y3:4cm

FONT h:3cm
TEXT "Poly"

text

FONT

− Defines the font style/color for drawn text.

www.omilab.org

26

2. Modeling Language Notation Specification in ADOxx
> GraphRep Structural Commands

 SET
− Sets a variable with a constant or the result of an expression,

which in turn can contain variables.
 AVAL
− Sets variables with the values from an attribute of the

instantiated object.
 IF / ELSIF / ELSE
− Allows to change the representation based on values.

 BITMAPINFO
− Reads the height and width of a bitmap file, allowing to properly

represent it.
 TEXTBOX / ATTRBOX
− Similar to TEXT and ATTR. However instead of drawing the

values it sets specific variables with the rectangle area they
would need.

Style elements Shape elements Variable
assigning
elements

Context
elements

Control
elements

www.omilab.org

27

Examples
GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:4cm y1:2cm x2:4cm
y2:3cm x3:2cm y3:4cm

AVAL var:"Name"

IF (LEN(var)>5) {
TEXT "<too long Name>"
}
ELSE {
TEXT (var)

}

Var is not shown in the GraphRep Editor!

www.omilab.org

28

Examples
GRAPHREP

SHADOW off
PEN style:dash
FILL color:red
POLYGON 3 x1:4cm y1:2cm
x2:4cm y2:3cm
x3:2cm y3:4cm

AVAL var:"Name"

SET constant:"test"
TEXT (constant)

www.omilab.org

29

Small Exercise

GRAPHREP

SHADOW off
PEN style:dash
FILL color:red

AVAL var:"Name"

IF (var="Name") {
FILL color:"green"
}

RECTANGLE w:3cm h:6cm

Create a Rectangle
It should be green if the name
attribute has the value „Name“
and red in all other cases

www.omilab.org

30

Small Exercise II

GRAPHREP

SHADOW mode:off
PEN style:dash
FILL color:red

AVAL var:"Name"

IF ((VAL var)=5) {
FILL color:"yellow"
}

RECTANGLE w:3cm h:6cm

Create a Rectangle
It should be yellow if the name
attribute has the value „5“ and
red in all other cases

www.omilab.org

31

2. Modeling Language Notation Specification in
ADOxx > GraphRep Example

GRAPHREP

#Container Rectangle

RECTANGLE x:-1.5cm y:-0.5cm w:3cm h:1cm

#Arrow Lines

PEN style:dash

LINE x1:-0.8cm x2:0.8cm y1:-0.2cm y2:-0.2cm

LINE x1:-0.8cm x2:0.8cm y1:0.2cm y2:0.2cm

#Arrow Ends

PEN style:solid

LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.1cm

LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.3cm

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.1cm

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.3cm

#Right actor

ELLIPSE x:1.1cm y:-0.2cm rx:0.15cm ry:0.15cm

LINE x1:1.1cm x2:1.1cm y1:-0.05cm y2:0.2cm

LINE x1:1.1cm x2:0.95cm y1:0.2cm y2:.3cm

LINE x1:1.1cm x2:1.25cm y1:0.2cm y2:.3cm

LINE x1:0.95cm x2:1.25cm

#Left actor

ELLIPSE x:-1.1cm y:-0.2cm rx:0.15cm ry:0.15cm

LINE x1:-1.1cm x2:-1.1cm y1:-0.05cm y2:0.2cm

LINE x1:-1.1cm x2:-0.95cm y1:0.2cm y2:.3cm

LINE x1:-1.1cm x2:-1.25cm y1:0.2cm y2:.3cm

LINE x1:-0.95cm x2:-1.25cm

www.omilab.org

32

2. Modeling Language Notation Specification in
ADOxx > GraphRep Repository
 More free available GraphRep examples can be found at the ADOxx

GraphRep Repository
− https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-

/wiki/GRAPHREP+Repository/FrontPage

https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage

www.omilab.org

33

2. Modeling Language Notation Specification in
ADOxx > GraphRepGenerator
 Implementation of GraphRep code can be supported by the

GraphRepGenerator
− http://vienna-omilab.dke.univie.ac.at/GraphRepGenerator/editor/svg-

editor.html

http://vienna-omilab.dke.univie.ac.at/GraphRepGenerator/editor/svg-editor.html

www.omilab.org

34

Excurse: Use Font Symbols

 You can use font symbols for your notation
 Example:

 Only use default fonts which are installed on all
machines!

GRAPHREP

FONT "Webdings" h:28pt style:bold color:black
TEXT "u"

www.omilab.org

35

Overview & Goals

1. Application Scenario Notation
2. Modeling Language Notation Specification in ADOxx
3. Exercise Application: Notation for ‘Heliport’
4. Lessons Learned

www.omilab.org

36

3. Exercise Application: Static Heliport notation

Use the “ADOxx 1.5 Experimentation Library”
I. Create a new class called „Heliport“
II. Create a graphical visualization for Heliport

a. Manual GraphRep specification
b. GraphRepGenerator utilization

III. Add the MyHeliport class to a ‘Smart City’ model type
IV. Create Smart City models and use the new ‘Heliport’

class

www.omilab.org

37

Overview & Goals

1. Application Scenario Notation
2. Modeling Language Notation Specification in ADOxx
3. Exercise Application: Notation for ‘Heliport’
4. Lessons Learned

www.omilab.org

38

4. Lessons learned

 Domain-specific requirements also affect the graphical
visualization of modeling classes and relation classes

 The notation in ADOxx is specified in the GraphRep
attribute

 How to create a notation for Modeling Classes
 How to create graphical instances of Modeling Classes

in the Modeling Toolkit

www.omilab.org

39

Solution Exercise Application: Static Heliport
notation
I. Create a new modeling class called „Heliport“
1. Start the Development Toolkit
2. Click on „Library Management“
3. Click on „Settings“
4. Click on a library, e.g., „ADOxx Experimentation Library“
5. Select the „Dynamic Experimentation Library“
6. Click on „Class hierarchy“

1

2

5

3

4

www.omilab.org

40

Solution Exercise Application: Static Heliport
notation
I. Create a new modeling class called „Heliport“

1

12
3

4

1. Adjust the View
 Enable “Metamodel” and

“Class hierarchy”
2. Right-click on

“_D_Construct_ -> “New
class…”

3. Enter “Heliport” as name for
the new class

4. Click on “Ok”

www.omilab.org

41

Solution Exercise Application: Static Heliport
notation
IIa. Create a graphical visualization for ‘Heliport’

1. Double-click on the
“GraphRep” attribute of the
class “Heliport”

2. Click on “Dialog”
3. Copy this code into the „Text“

area:
GRAPHREP

SHADOW off

PEN color:black

FILL color:gray

RECTANGLE x:-0.5cm y:-0.5cm
w:1cm h:1cm

PEN w:.1cm color:white

ELLIPSE rx:.45cm ry:.45cm

PEN color:white w:0.1pt

FONT "Arial" h:24pt color:white
bold

TEXT "H" x:.02cm y:.05cm w:c h:c

4. Press “Apply”, “Close” and
“Save changes!”

1

2

4
3

www.omilab.org

42

Solution Exercise Application: Static Heliport
notation
IIb. Create a graphical visualization for ‘Heliport’ with the GraphRep Generator

http://vienna-omilab.dke.univie.ac.at/GraphRepGenerator/editor/svg-
editor.html

www.omilab.org

43

Solution Exercise Application: Static Heliport
notation
III. Add the ‘Heliport’ class to a modeltype
1. Click on „Library Management“
2. Click on „Settings“
3. Click on „ADOxx Experimentation Library“
4. Select the „ADOxx Dynamic Experimentation Library“
5. Click on „Library attributes“

1

2

5

3

4

www.omilab.org

44

Solution Exercise Application: Static Heliport
notation
III. Add the ‘Heliport’ class to a modeltype
1. Click on „Add-ons“
2. Click on „Dialog“
3. Add the text
MODELTYPE “Smart City” from:none

INCL “Heliport”

4. Click on „Apply“

1

2

3

www.omilab.org

45

Solution Exercise Application: Static Heliport
notation
IV. Create Smart City models and use the new ‘Heliport’ class
1. Click on „Model“ => “New”
2. Select the „SmartCity” model type
3. Define a name for the new model
4. Click on the „Models“ model group
5. Click on “Create”

1
1

3

2 4 5

www.omilab.org

46

Solution Exercise Application: Static Heliport
notation

	GraphRep
	Overview & Goals
	Overview & Goals
	Generic Modeling Method Framework
	1. Application Scenario: Modeling Language Notation for Smart Cities�Requirements for Specificity in Notation
	2. Modeling Language Notation Specification in ADOxx
	1. Application Scenario: Modeling Language Notation for Smart Cities Requirements for Specificity in Notation
	Overview & Goals
	Meta Model of Meta Modeling Language
	2. Modeling Language Notation Specification in ADOxx
	2. Modeling Language Notation Specification in ADOxx
	2. Modeling Language Notation Specification in ADOxx > GraphRep Elements
	2. Modeling Language Notation Specification in ADOxx > GraphRep Basics
	2. Modeling Language Notation Specification in ADOxx > GraphRep Basics
	2. Modeling Language Notation Specification in ADOxx > GraphRep Commands
	Static Notation Example
	2. Modeling Language Notation Specification in ADOxx > GraphRep Coordinates
	Examples
	2. Modeling Language Notation Specification in ADOxx > GraphRep for Relation Classes
	2. Modeling Language Notation Specification in ADOxx > GraphRep for Relation Classes I
	2. Modeling Language Notation Specification in ADOxx > GraphRep for Relation Classes II
	2. Modeling Language Notation Specification in ADOxx > GraphRep for Relation Classes III
	2. Modeling Language Notation Specification in ADOxx > GraphRep Commands
	Example
	2. Modeling Language Notation Specification in ADOxx > GraphRep Structural Commands
	Examples
	Examples
	Small Exercise
	Small Exercise II
	2. Modeling Language Notation Specification in ADOxx > GraphRep Example
	2. Modeling Language Notation Specification in ADOxx > GraphRep Repository
	2. Modeling Language Notation Specification in ADOxx > GraphRepGenerator
	Excurse: Use Font Symbols
	Overview & Goals
	3. Exercise Application: Static Heliport notation
	Overview & Goals
	4. Lessons learned
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation
	Solution Exercise Application: Static Heliport notation

