**Conceptual Models of Production Processes** 



The Digital Production Designer: an environment to conceptually design production process model-value functionality

- Assoc.Prof Ion MIRONESCU
- ion.mironescu@ulbsibiu.ro
- Lucian Blaga University Sibiu

# Flexible manufacturing systems



#### Flexible manufacturing system (FMS)

- manufacturing systems able to reconfigure themselves
- rapid reconfiguration
- multiple types of products.

### • A FMS consist of:

- a set of workstations
  - Automatic execution of large sets of operations machine flexibility
  - Cope with large-scale changes in **volume**, **capacity**, or **capability** demands.
- a material handling system
  - flexible conveyors, automated guided vehicles (AGV) and loading-unloading robots routing flexibility
  - changed to produce new product types, change the order of operations.
- a complex command and control system orchestrates the cooperation

# Example





## Targets



- Layout design
  - Model of the manufacturing line
    - Workstation with capabilities
    - Material handling system
  - Analysis of volume, capacity and capability of the represented system
- Operation design Scheduling
- Automation Control system design

## Layout Design Goals



- Connections & placement
- Assessment of general capabilities
- Design constraints
- Basic control loops

# Digital Design Planner





### Modelling Language for Manufacturing Processes . (MLMP)

DIGITAL DESIGN SKILLS FOR FACTORIES OF THE FUTUR













# BeeUp / Petri net

| Bee-Up 1.5 Modelling Toolkit (Admin) - [Test1 (EPC Model)]                       | - 🗆 X |
|----------------------------------------------------------------------------------|-------|
| ) Algorithms Edit Extras Window Help Export                                      | _ & × |
| 기 및 G 등 Simulation _ 김 등 G G ( ) 는 글 글 글 등 것 / / / / / / / / / / / / / / / / / / |       |
| oplorer - Model groups 🛛 Mo 🖬                                                    |       |
| E& #@O ♦ E *E @                                                                  |       |
| C Exercises                                                                      |       |
| Lecrise sheet 1                                                                  |       |
| Exercise sheet 3                                                                 |       |
| Description that 5                                                               |       |
|                                                                                  |       |
| Description that 9                                                               |       |
| Elected process                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
| - QB Sched_automat                                                               |       |
|                                                                                  |       |
| - of test                                                                        |       |
| - Itest2                                                                         |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
| avigator 🔀                                                                       |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |
| EPC 100%                                                                         |       |
|                                                                                  |       |
|                                                                                  |       |
|                                                                                  |       |





### Petri net



FACTORIES OF THE FUTURE

**\*** 10 Capacity B12 B12 WS2 Loading\_WS2\_m m7 L Loading B6 m4-15081 B12 Unloading B12 m7 \* 10 • 10 Capacity B4 Capacity K B5 Capacity WS2 m7 WS2\_m7 . WS1\_m1 Processing WS1 B4 Loading WS1 B4 m3 B3 WS1 Loading 🔭 WS1 m1 Unloading B4 m3 In\_T\_m3 B4 T1 B5 WS2 m3 T1 B5 m3 Loading B5 m3 B5 Unloading B5 m3 Loading WS2\_m3 Processing Loading N B6 m4 WS2 m3 WS2 B6 m4 10 Capacity WS1 m1 10 Capacity\_WS2\_m3 Capacity B6 B6 10 Capacity B3 :: Unloading B6 m4 Capacity\_W4\_m3 Place (PN)-15269 10 Loading B3 m1 Unloading **B**3 B3 m1 Capacity-14945 Input\_M\_m4 ٠ M1 WS4 Loading\_W\_m4 M\_m4 W\_m4 C\_m4 m4 Out B11 Unloading m4-14942 B11 WS4 B11 Load Unloading m6 B11 m6 m2-14677-14701 m6 Idle • W\_m5 Loading W m5 M1 WS4 C\_m5 M\_m5 m5 B7 M1 m5 ..... • 10 10 Capacity\_W\_m5 Capacity B7 Capacity K B8 Unloading B7 m2 WS3\_m2 Processing WS3 B8 Place (PN)-15272 Loading WS3 m2 Loading B7 B7 WS3 B7 m2 WS3 Loading B8 m5 Unloading B8 m5 **B8** ¥ • 10 Capacity WS3

# Scheduling





# Scheduling principles

DIGIES OF THE FUTURE

- Scheduling
  - Time planning the tasks of multiple jobs and mapping them on the available resources
- Types of scheduling
  - Forward scheduling start with the time when resources become available to determine the due time.
  - Backward scheduling planning the tasks from the due time or required-by time to determine the start time On-line
  - Off-line
  - Single stage
  - Multistage
- The benefits of production scheduling include:
  - Process change-over reduction
  - Inventory reduction, leveling
  - Reduced scheduling effort
  - Increased production efficiency
  - Work load leveling
  - Accurate due date
  - Real time information

# Scheduling

- Optimization problem represented by a triple  $\alpha \mid \beta \mid \gamma$ 
  - $\alpha$  The design of the resources
  - $\beta$  The running properties and constraints
  - γ The target function to be minimized
- $\alpha$  only 1 value of the following:
  - 1 There is only one machine
  - $P_m$  There are *m* identical machines that run in parallel
  - *F<sub>m</sub>* Flow shop with *m* machines, every job must be carried out on every machine in the same predetermined succession
  - J<sub>m</sub> Job shop with m machines Each job must also be executed on every machine, but the succession is predetermined, but not necesary the same for all jobs
  - ▶ *O<sub>m</sub>* Open shop with *m* machines. very order must be processed on every machine, but in arbitrary order
- $\beta$  Can be empty or to have multiple values. Some examples:
  - p job have same processing tine on al machines
  - ▶ *d* job have same due dates
  - *pmnt* preemption job can be interrupted
- ► Y
- absence of an objective value is denoted by a single dash. This means that the problem consists simply in producing a feasible scheduling, satisfying all given constraints
- maximisation or minimisation of a combination (weighted sum) of completion time C<sub>j</sub>, flow time F<sub>j</sub>, Lateness L<sub>j</sub> Throughput U<sub>j</sub>, Tardiness T<sub>j</sub>, Earlisness E<sub>j</sub>



# Scheduling



- ▶ is an NP problem for *m*>2
- Intensive researched domain
- need intensive mathematical support for solving

#### But

- modeling can qualitatively help understand and classify the scheduling problem ( $\alpha \mid \beta \mid \gamma$ )
- simulation can qualitatively and quantitatively validates the results and algorithms

### Automation





## Automation with Petri nets



- Supervisory control the process of limiting the action of a plant (described as an DES) to a set of safe, allowable or desirable behaviors
- Standard procedure of control design
  - theorem of controller synthesis described in [Moody98]
  - based on incidence matrix and constraint formulation
  - Transition observable and controllable or not
  - Constraints
    - Logical transition fires if
    - Non-timed constraints limit the tokens number in a place
    - ▶ Timed constraints transition fires after *x* seconds
- Deadlock control
  - Deadlock removal by design deadlock free nets siphon based methods
  - Deadlock avoidance trough

## Summary



Methods and tools for

- Layout design MSML/Digital Design Planer Petri net/ BeeUp
- Operation design Scheduling MSML/Digital Design Planer and ?
- Automation Control system design Petri net/ BeeUp